Skip to content
Snippets Groups Projects
Commit b06a2d89 authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Adds new paper specific examples

parent a2c05b4d
No related branches found
No related tags found
No related merge requests found
import pyfstat
import numpy as np
import matplotlib.pyplot as plt
sqrtSX = 1e-22
tstart = 1000000000
duration = 100*86400
tend = tstart+duration
# Define parameters of the Crab pulsar as an example
tref = .5*(tstart + tend)
F0 = 30.0
F1 = -1e-10
F2 = 0
Alpha = 5e-3
Delta = 6e-2
# Signal strength
depth = 10
h0 = sqrtSX / depth
VF0 = VF1 = 200
dF0 = np.sqrt(3)/(np.pi*duration)
dF1 = np.sqrt(45/4.)/(np.pi*duration**2)
DeltaF0 = VF0 * dF0
DeltaF1 = VF1 * dF1
# Next, taking the same signal parameters, we include a glitch half way through
dtglitch = duration/2.0
delta_F0 = 0.25*DeltaF0
delta_F1 = -0.1*DeltaF1
glitch_data = pyfstat.Writer(
label='single_glitch', outdir='data', tref=tref, tstart=tstart, F0=F0,
F1=F1, F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0,
sqrtSX=sqrtSX, dtglitch=dtglitch, delta_F0=delta_F0, delta_F1=delta_F1)
glitch_data.make_data()
F0s = [F0-DeltaF0/2., F0+DeltaF0/2., 1*dF0]
F1s = [F1-DeltaF1/2., F1+DeltaF1/2., 1*dF1]
F2s = [F2]
Alphas = [Alpha]
Deltas = [Delta]
search = pyfstat.GridSearch(
'single_glitch_F0F1_grid', 'data', 'data/*single_glitch*sft', F0s, F1s,
F2s, Alphas, Deltas, tref, tstart, tend)
search.run()
search.plot_2D('F0', 'F1')
theta_prior = {'F0': {'type': 'unif', 'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2},
'F1': {'type': 'unif', 'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta
}
ntemps = 3
log10temperature_min = -0.05
nwalkers = 100
nsteps = [500, 500]
mcmc = pyfstat.MCMCSearch(
'single_glitch', 'data', sftfilepath='data/*_single_glitch*.sft',
theta_prior=theta_prior, tref=tref, minStartTime=tstart, maxStartTime=tend,
nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
log10temperature_min=log10temperature_min)
mcmc.run()
mcmc.plot_corner(figsize=(3.2, 3.2))
mcmc.print_summary()
theta_prior = {'F0': {'type': 'unif', 'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2},
'F1': {'type': 'unif', 'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta,
'tglitch': {'type': 'unif', 'lower': tstart+0.1*duration,
'upper': tend-0.1*duration},
'delta_F0': {'type': 'halfnorm', 'loc': 0, 'scale': 1e-3*F0},
'delta_F1': {'type': 'norm', 'loc': 0, 'scale': 1e-3*abs(F1)},
}
ntemps = 3
log10temperature_min = -0.1
nwalkers = 100
nsteps = [1000, 1000]
glitch_mcmc = pyfstat.MCMCGlitchSearch(
'single_glitch_glitchSearch', 'data',
sftfilepath='data/*_single_glitch*.sft', theta_prior=theta_prior,
tref=tref, minStartTime=tstart, maxStartTime=tend, nsteps=nsteps,
nwalkers=nwalkers, ntemps=ntemps,
log10temperature_min=log10temperature_min)
glitch_mcmc.run()
glitch_mcmc.plot_corner(figsize=(3.2, 3.2))
glitch_mcmc.print_summary()
import pyfstat
import numpy as np
import matplotlib.pyplot as plt
plt.style.use('thesis')
F0 = 30.0
F1 = -1e-10
F2 = 0
Alpha = 5e-3
Delta = 6e-2
tstart = 1000000000
duration = 100*86400
data_tstart = tstart - duration
data_tend = data_tstart + 3*duration
tref = .5*(data_tstart+data_tend)
h0 = 1e-23
sqrtSX = 1e-22
transient = pyfstat.Writer(
label='transient', outdir='data', tref=tref, tstart=tstart, F0=F0, F1=F1,
F2=F2, duration=duration, Alpha=Alpha, Delta=Delta, h0=h0, sqrtSX=sqrtSX,
minStartTime=data_tstart, maxStartTime=data_tend)
transient.make_data()
print transient.predict_fstat()
DeltaF0 = 6e-7
DeltaF1 = 1e-13
VF0 = (np.pi * duration * DeltaF0)**2 / 3.0
VF1 = (np.pi * duration**2 * DeltaF1)**2 * 4/45.
print '\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n'.format(VF0*VF1, VF0, VF1)
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2.},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2.},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta
}
ntemps = 3
log10temperature_min = -1
nwalkers = 100
nsteps = [750, 250]
mcmc = pyfstat.MCMCSearch(
label='transient_search_initial_stage', outdir='data',
sftfilepath='data/*transient*sft', theta_prior=theta_prior, tref=tref,
minStartTime=data_tstart, maxStartTime=data_tend, nsteps=nsteps,
nwalkers=nwalkers, ntemps=ntemps,
log10temperature_min=log10temperature_min)
mcmc.run()
mcmc.plot_cumulative_max()
mcmc.print_summary()
theta_prior = {'F0': {'type': 'unif',
'lower': F0-DeltaF0/2.,
'upper': F0+DeltaF0/2.},
'F1': {'type': 'unif',
'lower': F1-DeltaF1/2.,
'upper': F1+DeltaF1/2.},
'F2': F2,
'Alpha': Alpha,
'Delta': Delta,
'transient_tstart': {'type': 'unif',
'lower': data_tstart,
'upper': data_tend},
'transient_duration': {'type': 'halfnorm',
'loc': 0,
'scale': 0.5*duration}
}
nwalkers = 500
nsteps = [200, 200]
mcmc = pyfstat.MCMCTransientSearch(
label='transient_search', outdir='data',
sftfilepath='data/*transient*sft', theta_prior=theta_prior, tref=tref,
minStartTime=data_tstart, maxStartTime=data_tend, nsteps=nsteps,
nwalkers=nwalkers, ntemps=ntemps,
log10temperature_min=log10temperature_min)
mcmc.run()
mcmc.plot_corner(add_prior=True)
mcmc.print_summary()
...@@ -1110,8 +1110,14 @@ a simulated transient signal and Gaussian noise.} ...@@ -1110,8 +1110,14 @@ a simulated transient signal and Gaussian noise.}
\subsection{Glitches} \subsection{Glitches}
\label{sec_glitches}
\label{sec_glitches}
\begin{figure}[htb]
\centering
\includegraphics[width=0.5\textwidth]{single_glitch_F0F1_grid_2D}
\caption{}
\label{fig:}
\end{figure}
\section{Conclusion} \section{Conclusion}
\label{sec_conclusion} \label{sec_conclusion}
......
Paper/single_glitch_F0F1_grid_2D.png

99.5 KiB

0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment