Select Git revision
Forked from
finesse / pykat
159 commits behind the upstream repository.
master.py 5.39 KiB
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from pykat import finesse
from pykat.commands import *
import copy
import pickle
import sys
import scipy.optimize
def main():
print("""
--------------------------------------------------------------
Example file for using PyKat to automate Finesse simulations
Finesse: http://www.gwoptics.org/finesse
PyKat: http://www.gwoptics.org/pykat
The file runs through the various Finesse simulations
to generate the Finesse results reported in the document:
`Comparing Finesse simulations, analytical solutions and OSCAR
simulations of Fabry-Perot alignment signals', LIGO-T1300345,
freely available online: http://arxiv.org/abs/1401.5727
This file is part of a collection; it outputs the results
shown the document's sections 3 and 4 and saves temporary
data and a new Finesse input file to be read by master2.py.
Andreas Freise 16.01.2014
--------------------------------------------------------------
""")
# for debugging we might need to see the temporay file:
global kat
kat = finesse.kat(tempdir=".",tempname="test")
kat.verbose = False
kat.loadKatFile('asc_base.kat')
kat.maxtem=3
Lambda=1064.0e-9
result = {}
# defining variables as global for debugging
#global kat, out, result
print("--------------------------------------------------------")
print(" 1. tunes ETM position to find resonance")
kat.ETM.phi=resonance(kat)
print("--------------------------------------------------------")
print(" 2. print sideband and carrier powers/amplitudes")
powers(kat)
print("--------------------------------------------------------")
print(" 3. determine the optimal phase for the PDH signal")
(result['p_phase'], result['q_phase']) = pd_phase(kat)
# setting demodulation phase
code_det = """
pd1 PDrefl_p 9M 0 nWFS1
scale 2 PDrefl_p
pd1 PDrefl_q 9M 90 nWFS1
scale 2 PDrefl_q
"""
kat.parseKatCode(code_det)
kat.PDrefl_p.phase1=result['p_phase']
kat.PDrefl_q.phase1=result['q_phase']
print("--------------------------------------------------------")
print(" 4. adding a 0.1nm offset to ETM and compute PDH signal")
result['phi_tuned']=float(kat.ETM.phi)
result['phi_detuned'] = result['phi_tuned'] + 0.1*360.0/1064.0
kat.ETM.phi=result['phi_detuned']
print(" new ETM phi tuning = %g " % kat.ETM.phi)
(result['pd_p'], result['pd_q']) = pd_signal(kat)
print(" PDH inphase = %e " % result['pd_p'])
print(" PDH quadrtature = %e " % result['pd_q'])
print("--------------------------------------------------------")
print(" Saving results in temp. files to be read by master2.py")
tmpkatfile = "asc_base2.kat"
tmpresultfile = "myshelf1.dat"
print(" kat object saved in: {0}".format(tmpkatfile))
print(" current results saved in: {0}".format(tmpresultfile))
# first the current kat file
kat.saveScript(tmpkatfile)
with open(tmpresultfile, 'wb') as handle:
pickle.dump(result, handle)
#---------------------------------------------------------------------------
def pd_signal(tmpkat):
kat = copy.deepcopy(tmpkat)
code1="""
pd cav nITM2
yaxis abs
"""
kat.parseKatCode(code1)
kat.noxaxis = True
global out
out = kat.run()
print(" Cavity power: {0:.6f}W".format(float(out['cav'])))
return (float(out['PDrefl_p']), float(out['PDrefl_q']))
def pd_phase(tmpkat):
kat = copy.deepcopy(tmpkat)
code_det = """
pd1 PDrefl_q 9M 90 nWFS1
"""
kat.parseKatCode(code_det)
kat.noxaxis= True
# function for root finding
def PD_q_test(x):
kat.PDrefl_q.phase1=x
out = kat.run()
print('\r root finding: function value {0:<16g}'.format(float(out.y)), end='')
sys.stdout.flush()
return float(out.y)
# do root finding
xtol=1e-8
(result, info)=scipy.optimize.bisect(PD_q_test,80.0,100.0, xtol=xtol, maxiter=500, full_output=True)
print("")
if info.converged:
p_phase=result-90.0
q_phase=result
print(" Root has been found:")
print(" p_phase %8f" % (p_phase))
print(" q_phase %8f" % (q_phase))
print(" (%d iterations, %g tolerance)" % (info.iterations, xtol))
return (p_phase, q_phase)
else:
raise Exception("Root has not been found")
def powers(tmpkat):
kat = copy.deepcopy(tmpkat)
code1 = """
ad EOM_up 9M nEOM1
ad EOM_low -9M nEOM1
pd cav_pow nITM2
ad cav_c 0 nITM2
ad WFS1_u 9M nWFS1
ad WFS1_l -9M nWFS1
ad WFS1_c 0 nWFS1
ad WFS2_u 9M nWFS2
ad WFS2_l -9M nWFS2
ad WFS2_c 0 nWFS2
noxaxis
"""
kat.parseKatCode(code1)
global out
out = kat.run()
for i in range(len(out.y[0])):
print(" %8s: %.4e" % (out.ylabels[i], out.y[0,i]))
def resonance(tmpkat):
kat = copy.deepcopy(tmpkat)
code1 = """
ad carr2 0 nITM1*
ad carr3 0 nITM2
yaxis deg
"""
kat.parseKatCode(code1)
kat.noxaxis = True
# function for root finding
def carrier_resonance(x):
kat.ETM.phi=x
out = kat.run()
phase = (out.y[0,0]-out.y[0,1]-90)%360-180.0
print('\r root finding: function value {0:<16g}'.format(float(phase)), end='')
sys.stdout.flush()
return phase
# do root finding
xtol=1e-8
(result, info)=scipy.optimize.bisect(carrier_resonance,0.0,40.0, xtol=xtol, maxiter=500, full_output=True)
print("")
if info.converged:
print(" Root has been found:")
print(" ETM phi %8f" % (result))
print(" (%d iterations, %g tolerance)" % (info.iterations, xtol))
return result
else:
raise Exception(" Root has not been found")
if __name__ == '__main__':
main()