Skip to content
Snippets Groups Projects
Select Git revision
  • d07d891d7b8b00dd312f933a789c73db8964c98f
  • master default
2 results

master.py

Blame
  • Forked from finesse / pykat
    159 commits behind the upstream repository.
    master.py 5.39 KiB
    from __future__ import absolute_import
    from __future__ import division
    from __future__ import print_function
    from __future__ import unicode_literals
    
    from pykat import finesse
    from pykat.commands import *
    import copy
    import pickle
    import sys
    import scipy.optimize
    
    
    def main():
    	print("""
    	--------------------------------------------------------------
    	Example file for using PyKat to automate Finesse simulations
    	Finesse: http://www.gwoptics.org/finesse
    	PyKat:	 http://www.gwoptics.org/pykat
    	
    	The file runs through the various Finesse simulations
    	to generate the Finesse results reported in the document:
    	`Comparing Finesse simulations, analytical solutions and OSCAR 
    	simulations of Fabry-Perot alignment signals', LIGO-T1300345,
    	freely available online: http://arxiv.org/abs/1401.5727
    
    	This file is part of a collection; it outputs the results
    	shown the document's sections 3 and 4 and saves temporary
    	data and a new Finesse input file to be read by master2.py.
    	
    	Andreas Freise 16.01.2014
    	--------------------------------------------------------------
    	""")   
    	
    	# for debugging we might need to see the temporay file:
    	global kat
    	kat = finesse.kat(tempdir=".",tempname="test")
    	kat.verbose = False
    	kat.loadKatFile('asc_base.kat')
    	kat.maxtem=3
    	Lambda=1064.0e-9
    	result = {}
    	# defining variables as global for debugging
    	#global kat, out, result
    	
    	print("--------------------------------------------------------")
    	print(" 1. tunes ETM position to find resonance")
    	kat.ETM.phi=resonance(kat)
    	
    	print("--------------------------------------------------------")
    	print(" 2. print sideband and carrier powers/amplitudes")
    	powers(kat)
    	
    	print("--------------------------------------------------------")
    	print(" 3. determine the optimal phase for the PDH signal")
    	(result['p_phase'], result['q_phase']) = pd_phase(kat)
    	
    	# setting demodulation phase
    	code_det = """
    	pd1 PDrefl_p 9M 0 nWFS1
    	scale 2 PDrefl_p
    	pd1 PDrefl_q 9M 90 nWFS1
    	scale 2 PDrefl_q
    	"""
    	kat.parseKatCode(code_det)
    	kat.PDrefl_p.phase1=result['p_phase']
    	kat.PDrefl_q.phase1=result['q_phase']
    	
    	print("--------------------------------------------------------")
    	print(" 4. adding a 0.1nm offset to ETM and compute PDH signal")
    	result['phi_tuned']=float(kat.ETM.phi)
    	result['phi_detuned'] = result['phi_tuned'] + 0.1*360.0/1064.0
    	
    	kat.ETM.phi=result['phi_detuned']
    	print(" new ETM phi tuning = %g " % kat.ETM.phi)
    
    	(result['pd_p'], result['pd_q']) = pd_signal(kat)
    	print(" PDH inphase     = %e " % result['pd_p'])
    	print(" PDH quadrtature = %e " % result['pd_q'])
    	
    	print("--------------------------------------------------------")
    	print(" Saving results in temp. files to be read by master2.py")
    	tmpkatfile = "asc_base2.kat"
    	tmpresultfile = "myshelf1.dat"
    	print(" kat object saved in: {0}".format(tmpkatfile))
    	print(" current results saved in: {0}".format(tmpresultfile))
    	# first the current kat file
    	kat.saveScript(tmpkatfile)
    	with open(tmpresultfile, 'wb') as handle:
    		pickle.dump(result, handle)
    	
    #---------------------------------------------------------------------------
    
    def pd_signal(tmpkat):
    
        kat = copy.deepcopy(tmpkat)
        code1="""
            pd cav nITM2
            yaxis abs
            """
        kat.parseKatCode(code1)
        kat.noxaxis = True
        global out
        out = kat.run()
        print(" Cavity power: {0:.6f}W".format(float(out['cav'])))
        return (float(out['PDrefl_p']), float(out['PDrefl_q']))
        
    def pd_phase(tmpkat):
    
    	kat = copy.deepcopy(tmpkat)
    	code_det = """
    	pd1 PDrefl_q 9M 90 nWFS1
    	"""
    	
    	kat.parseKatCode(code_det)
    	kat.noxaxis= True
    
    	# function for root finding
    	def PD_q_test(x):
    		kat.PDrefl_q.phase1=x
    		out = kat.run()
    		print('\r root finding: function value {0:<16g}'.format(float(out.y)), end='')
    		sys.stdout.flush()
    		return float(out.y)
    
    	# do root finding
    	xtol=1e-8
    
    	(result, info)=scipy.optimize.bisect(PD_q_test,80.0,100.0, xtol=xtol, maxiter=500, full_output=True)
    
    	print("")
    	if info.converged:
    		p_phase=result-90.0
    		q_phase=result
    		print(" Root has been found:")
    		print(" p_phase %8f" % (p_phase))
    		print(" q_phase %8f" % (q_phase))
    		print(" (%d iterations, %g tolerance)" % (info.iterations, xtol))
    		return (p_phase, q_phase)
    	else:
    		raise Exception("Root has not been found")
    		
    
    def powers(tmpkat):
    
    	kat = copy.deepcopy(tmpkat)
    	
    	code1 = """
    	ad EOM_up 9M nEOM1
    	ad EOM_low -9M nEOM1
    	pd cav_pow nITM2
    	ad cav_c 0 nITM2
    	ad WFS1_u  9M nWFS1
    	ad WFS1_l -9M nWFS1
    	ad WFS1_c  0  nWFS1
    	ad WFS2_u  9M nWFS2
    	ad WFS2_l -9M nWFS2
    	ad WFS2_c	0 nWFS2
    	noxaxis
    	"""
    
    	kat.parseKatCode(code1)
    
    	global out
    	out = kat.run()
    	for i in range(len(out.y[0])):
    		print(" %8s: %.4e" % (out.ylabels[i], out.y[0,i]))
    
    
    def resonance(tmpkat):
    	kat = copy.deepcopy(tmpkat)
    	
    	code1 = """
    	ad carr2 0 nITM1*
    	ad carr3 0 nITM2
    	yaxis deg
    	"""
    	kat.parseKatCode(code1)
    	kat.noxaxis = True
    	
    	# function for root finding
    	def carrier_resonance(x):
    		kat.ETM.phi=x
    		out = kat.run()
    		phase = (out.y[0,0]-out.y[0,1]-90)%360-180.0
    		print('\r root finding: function value {0:<16g}'.format(float(phase)), end='')
    		sys.stdout.flush()
    		return phase
    	
    	# do root finding
    	xtol=1e-8
    	(result, info)=scipy.optimize.bisect(carrier_resonance,0.0,40.0, xtol=xtol, maxiter=500, full_output=True)
    	
    	print("")
    	if info.converged:
    		print(" Root has been found:")
    		print(" ETM phi %8f" % (result))
    		print(" (%d iterations, %g tolerance)" % (info.iterations, xtol))
    		return result
    	else:
    		raise Exception(" Root has not been found")
    		
    
    if __name__ == '__main__':
    	main()