Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pykat
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sean Leavey
pykat
Commits
b705ae7b
Commit
b705ae7b
authored
11 years ago
by
Sean Leavey
Browse files
Options
Downloads
Patches
Plain Diff
Added cavity scan example, which is 100% pure PyKat
parent
9b2b87e9
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
examples/cavity_scan.py
+333
-0
333 additions, 0 deletions
examples/cavity_scan.py
with
333 additions
and
0 deletions
examples/cavity_scan.py
0 → 100644
+
333
−
0
View file @
b705ae7b
# -*- coding: utf-8 -*-
"""
Fabry-Perot cavity scan example.
]--------(=========================)---->
laser ITM 10m cavity ETM photodiode
The simulation sets up a parameter list in the form of a Python dictionary,
then populates PyKat with the experimental setup directly (without using
a .kat file input - 100% PyKat).
The cavity is then scanned by tuning the ETM, and the results are plotted.
Some terminology:
ITM: initial test mass
ETM: end test mass
HR: highly reflective
AR: anti-reflective
Sean Leavey
s.leavey.1@research.gla.ac.uk
January 2014
"""
import
pykat
import
pylab
as
pl
import
numpy
as
np
#######################
# set some parameters #
#######################
parameters
=
{
'
laser
'
:
{
'
power
'
:
30
,
# input laser power [W]
'
frequency_offset
'
:
0
,
'
phase
'
:
0
},
'
cavity
'
:
{
'
length
'
:
10.8
,
# cavity length [m]
'
itm
'
:
{
# ITM
'
radius
'
:
0.023225
,
# [m]
'
radius_of_curvature
'
:
{
'
inner
'
:
{
# inner (concave) surface
'
x
'
:
-
5.7
,
# [m]
'
y
'
:
-
5.7
# [m]
},
'
outer
'
:
{
# outer (convex) surface
'
x
'
:
-
1.7763
,
# [m]
'
y
'
:
-
1.7763
# [m]
}
},
'
thickness
'
:
0.027
,
# [m]
'
reflectivity
'
:
{
# power reflectivity
'
inner
'
:
0.995
,
# inner (concave) surface
'
outer
'
:
0.001
# outer (convex) surface
},
'
transmission
'
:
{
# power transmission
'
inner
'
:
0.005
,
'
outer
'
:
0.999
},
'
tuning_angle
'
:
{
# phi
'
inner
'
:
0
,
'
outer
'
:
0
},
'
misalignment
'
:
{
# mirror misalignment [rad]
'
inner
'
:
{
'
x
'
:
0
,
'
y
'
:
0
},
'
outer
'
:
{
'
x
'
:
0
,
'
y
'
:
0
}
}
},
'
etm
'
:
{
# ETM
'
radius
'
:
0.023225
,
# [m]
'
radius_of_curvature
'
:
{
'
inner
'
:
{
# inner (concave) surface
'
x
'
:
5.7
,
# [m]
'
y
'
:
5.7
# [m]
},
'
outer
'
:
{
# outer (convex) surface
'
x
'
:
1.7763
,
# [m]
'
y
'
:
1.7763
# [m]
}
},
'
thickness
'
:
0.027
,
# [m]
'
reflectivity
'
:
{
# power reflectivity
'
inner
'
:
0.995
,
# inner (concave) surface
'
outer
'
:
0.001
# outer (convex) surface
},
'
transmission
'
:
{
# power transmission
'
inner
'
:
0.005
,
'
outer
'
:
0.999
},
'
tuning_angle
'
:
{
# phi
'
inner
'
:
0
,
'
outer
'
:
0
},
'
misalignment
'
:
{
# mirror misalignment [rad]
'
inner
'
:
{
'
x
'
:
0
,
'
y
'
:
0
},
'
outer
'
:
{
'
x
'
:
0
,
'
y
'
:
0
}
}
},
},
'
materials
'
:
{
'
bulk
'
:
{
'
silica
'
:
{
'
refractive_index
'
:
1.45
}
}
}
}
###############################################
# instantiate PyKat object and add components #
###############################################
# instantiate PyKat object
kat
=
pykat
.
finesse
.
kat
()
# laser
kat
.
add
(
pykat
.
components
.
laser
(
'
laser
'
,
# name
'
n1
'
,
# node
parameters
[
'
laser
'
][
'
power
'
],
parameters
[
'
laser
'
][
'
frequency_offset
'
],
parameters
[
'
laser
'
][
'
phase
'
]
)
)
# add a 1m space between laser and ITM
kat
.
add
(
pykat
.
components
.
space
(
'
space1
'
,
# name
'
n1
'
,
# node 1
'
n2
'
,
# node 2
1
# length [m]
)
)
##################
# ITM definition #
##################
# This involves three 'components':
# * a mirror to represent the convex AR surface;
# * a space representing the thickness of the mirror, with correct refractive index;
# * a mirror representing the concave HR surface
# AR coating
kat
.
add
(
pykat
.
components
.
mirror
(
'
M_ITM_AR
'
,
'
n2
'
,
'
n3
'
,
parameters
[
'
cavity
'
][
'
itm
'
][
'
reflectivity
'
][
'
outer
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
transmission
'
][
'
outer
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
tuning_angle
'
][
'
outer
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
radius_of_curvature
'
][
'
outer
'
][
'
x
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
radius_of_curvature
'
][
'
outer
'
][
'
y
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
misalignment
'
][
'
outer
'
][
'
x
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
misalignment
'
][
'
outer
'
][
'
y
'
],
0
,
parameters
[
'
cavity
'
][
'
itm
'
][
'
radius
'
]
*
2
)
)
# bulk mirror material
kat
.
add
(
pykat
.
components
.
space
(
'
M_ITM_BULK
'
,
'
n3
'
,
'
n4
'
,
parameters
[
'
cavity
'
][
'
itm
'
][
'
thickness
'
],
parameters
[
'
materials
'
][
'
bulk
'
][
'
silica
'
][
'
refractive_index
'
]
)
)
# HR coating
kat
.
add
(
pykat
.
components
.
mirror
(
'
M_ITM_HR
'
,
'
n4
'
,
'
n5
'
,
parameters
[
'
cavity
'
][
'
itm
'
][
'
reflectivity
'
][
'
inner
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
transmission
'
][
'
inner
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
tuning_angle
'
][
'
inner
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
radius_of_curvature
'
][
'
inner
'
][
'
x
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
radius_of_curvature
'
][
'
inner
'
][
'
y
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
misalignment
'
][
'
inner
'
][
'
x
'
],
parameters
[
'
cavity
'
][
'
itm
'
][
'
misalignment
'
][
'
inner
'
][
'
y
'
],
0
,
parameters
[
'
cavity
'
][
'
itm
'
][
'
radius
'
]
*
2
)
)
##########
# cavity #
##########
kat
.
add
(
pykat
.
components
.
space
(
'
space2
'
,
'
n5
'
,
'
n6
'
,
parameters
[
'
cavity
'
][
'
length
'
]
)
)
##################
# ETM definition #
##################
# This involves three 'components', just like the ITM definition.
# HR coating
kat
.
add
(
pykat
.
components
.
mirror
(
'
M_ETM_HR
'
,
'
n6
'
,
'
n7
'
,
parameters
[
'
cavity
'
][
'
etm
'
][
'
reflectivity
'
][
'
inner
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
transmission
'
][
'
inner
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
tuning_angle
'
][
'
inner
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
radius_of_curvature
'
][
'
inner
'
][
'
x
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
radius_of_curvature
'
][
'
inner
'
][
'
y
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
misalignment
'
][
'
inner
'
][
'
x
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
misalignment
'
][
'
inner
'
][
'
y
'
],
0
,
parameters
[
'
cavity
'
][
'
etm
'
][
'
radius
'
]
*
2
)
)
# bulk mirror material
kat
.
add
(
pykat
.
components
.
space
(
'
M_ETM_BULK
'
,
'
n7
'
,
'
n8
'
,
parameters
[
'
cavity
'
][
'
etm
'
][
'
thickness
'
],
parameters
[
'
materials
'
][
'
bulk
'
][
'
silica
'
][
'
refractive_index
'
]
)
)
# AR coating
kat
.
add
(
pykat
.
components
.
mirror
(
'
M_ETM_AR
'
,
'
n8
'
,
'
n9
'
,
parameters
[
'
cavity
'
][
'
etm
'
][
'
reflectivity
'
][
'
outer
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
transmission
'
][
'
outer
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
tuning_angle
'
][
'
outer
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
radius_of_curvature
'
][
'
outer
'
][
'
x
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
radius_of_curvature
'
][
'
outer
'
][
'
y
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
misalignment
'
][
'
outer
'
][
'
x
'
],
parameters
[
'
cavity
'
][
'
etm
'
][
'
misalignment
'
][
'
outer
'
][
'
y
'
],
0
,
parameters
[
'
cavity
'
][
'
etm
'
][
'
radius
'
]
*
2
)
)
##############
# photodiode #
##############
# photodiode looking at cavity transmitted light
kat
.
add
(
pykat
.
detectors
.
photodiode
(
'
pd1
'
,
'
n9
'
)
)
###########################
# Gaussian beam parameter #
###########################
# set q value 1m from ITM, i.e. at the n1 node
# use the utility method for this purpose
kat
.
space1
.
n1
.
q
=
pykat
.
utilities
.
optics
.
gaussian_beams
.
gauss_param
(
q
=
1.050412
+
24.243836j
)
# you can alternatively set w0 and z with gauss_param(w0 = #, z = #)
##############################
# define what we want to see #
##############################
# scan cavity from 0 to 360 degrees
kat
.
add
(
pykat
.
commands
.
xaxis
(
'
lin
'
,
[
0
,
360
],
kat
.
M_ETM_HR
,
kat
.
M_ETM_HR
.
phi
,
360
))
# set maximum TEM mode to model
kat
.
maxtem
=
3
#######################
# run script and plot #
#######################
# run simulation
r
=
kat
.
run
()
# output the raw FINESSE file that PyKat has generated
scriptList
=
kat
.
generateKatScript
()
print
''
.
join
(
scriptList
)
# calculate and print cavity finesse
r1r2
=
np
.
sqrt
(
parameters
[
'
cavity
'
][
'
itm
'
][
'
reflectivity
'
][
'
inner
'
])
*
np
.
sqrt
(
parameters
[
'
cavity
'
][
'
etm
'
][
'
reflectivity
'
][
'
inner
'
])
finesse
=
np
.
pi
/
(
2
*
np
.
arcsin
((
1
-
r1r2
)
/
(
2
*
np
.
sqrt
(
r1r2
))))
print
"
Cavity finesse: {0:.0f}
"
.
format
(
finesse
)
# create plot
pl
.
plot
(
r
.
x
,
r
.
y
)
# show grid
pl
.
grid
(
True
)
# set plot limits
pl
.
xlim
((
0
,
360
))
# make plot visible
pl
.
show
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment