Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pykat
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sean Leavey
pykat
Commits
d27a6b4d
Commit
d27a6b4d
authored
11 years ago
by
Andreas Freise
Browse files
Options
Downloads
Patches
Plain Diff
adding a colormap creator function. Needs some more work.
parent
2c98a106
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
pykat/utilities/plotting/colormap.py
+324
-0
324 additions, 0 deletions
pykat/utilities/plotting/colormap.py
with
324 additions
and
0 deletions
pykat/utilities/plotting/colormap.py
0 → 100644
+
324
−
0
View file @
d27a6b4d
import
numpy
as
np
import
matplotlib
BACKEND
=
'
Qt4Agg
'
matplotlib
.
use
(
BACKEND
)
from
matplotlib
import
rc
import
matplotlib.pyplot
as
plt
# =============================================================================
# ====================== The Class ColorMapCreator ============================
# =============================================================================
class
ColorMapCreator
:
"""
Class ColorMapCreator:
Create diverging colormaps from RGB1 to RGB2 using the method of Moreland
or a simple CIELAB-interpolation. numColors controls the number of color
values to output (odd number) and divide gives the possibility to output
RGB-values from 0.0-1.0 instead of 0-255. If a filename different than
""
is given, the colormap will be saved to this file, otherwise a simple
output using print will be given.
"""
# ======================== Global Variables ===============================
# Reference white-point D65
Xn
,
Yn
,
Zn
=
[
95.047
,
100.0
,
108.883
]
# from Adobe Cookbook
# Transfer-matrix for the conversion of RGB to XYZ color space
transM
=
np
.
array
([[
0.4124564
,
0.2126729
,
0.0193339
],
[
0.3575761
,
0.7151522
,
0.1191920
],
[
0.1804375
,
0.0721750
,
0.9503041
]])
# ============================= Functions =================================
def
__init__
(
self
,
RGB1
,
RGB2
,
numColors
=
257.
,
divide
=
255.
,
method
=
"
moreland
"
,
filename
=
""
):
# create a class variable for the number of colors
self
.
numColors
=
numColors
# assert an odd number of points
assert
np
.
mod
(
numColors
,
2
)
==
1
,
\
"
For diverging colormaps odd numbers of colors are desireable!
"
# assert a known method was specified
knownMethods
=
[
"
moreland
"
,
"
lab
"
]
assert
method
in
knownMethods
,
"
Unknown method was specified!
"
if
method
==
knownMethods
[
0
]:
#generate the Msh diverging colormap
self
.
colorMap
=
self
.
generateColorMap
(
RGB1
,
RGB2
,
divide
)
elif
method
==
knownMethods
[
1
]:
# generate the Lab diverging colormap
self
.
colorMap
=
self
.
generateColorMapLab
(
RGB1
,
RGB2
,
divide
)
def
getMap
(
self
):
return
self
.
colorMap
def
showMap
(
self
):
#rc('text', usetex=False)
a
=
np
.
outer
(
np
.
arange
(
0
,
1
,
0.01
),
np
.
ones
(
10
))
fig
=
plt
.
figure
(
99
,
figsize
=
(
10
,
2
))
plt
.
axis
(
"
off
"
)
cm
=
matplotlib
.
colors
.
ListedColormap
(
self
.
colorMap
)
pm
=
plt
.
imshow
(
a
,
aspect
=
'
auto
'
,
cmap
=
cm
,
origin
=
"
lower
"
)
plt
.
clim
(
0
,
1
)
fig
.
colorbar
(
pm
)
plt
.
draw
()
def
rgblinear
(
self
,
RGB
):
"""
Conversion from the sRGB components to RGB components with physically
linear properties.
"""
# initialize the linear RGB array
RGBlinear
=
np
.
zeros
((
3
,))
# calculate the linear RGB values
for
i
,
value
in
enumerate
(
RGB
):
value
=
float
(
value
)
/
255.
if
value
>
0.04045
:
value
=
(
(
value
+
0.055
)
/
1.055
)
**
2.4
else
:
value
=
value
/
12.92
RGBlinear
[
i
]
=
value
*
100.
return
RGBlinear
#-
def
sRGB
(
self
,
RGBlinear
):
"""
Back conversion from linear RGB to sRGB.
"""
# initialize the sRGB array
RGB
=
np
.
zeros
((
3
,))
# calculate the sRGB values
for
i
,
value
in
enumerate
(
RGBlinear
):
value
=
float
(
value
)
/
100.
if
value
>
0.00313080495356037152
:
value
=
(
1.055
*
np
.
power
(
value
,
1.
/
2.4
)
)
-
0.055
else
:
value
=
value
*
12.92
RGB
[
i
]
=
round
(
value
*
255.
)
return
RGB
#-
def
rgb2xyz
(
self
,
RGB
):
"""
Conversion of RGB to XYZ using the transfer-matrix
"""
return
np
.
dot
(
self
.
rgblinear
(
RGB
),
self
.
transM
)
#-
def
xyz2rgb
(
self
,
XYZ
):
"""
Conversion of RGB to XYZ using the transfer-matrix
"""
#return np.round(np.dot(XYZ, np.array(np.matrix(transM).I)))
return
self
.
sRGB
(
np
.
dot
(
XYZ
,
np
.
array
(
np
.
matrix
(
self
.
transM
).
I
)))
#-
def
rgb2Lab
(
self
,
RGB
):
"""
Conversion of RGB to CIELAB
"""
# convert RGB to XYZ
X
,
Y
,
Z
=
(
self
.
rgb2xyz
(
RGB
)).
tolist
()
# helper function
def
f
(
x
):
limit
=
0.008856
if
x
>
limit
:
return
np
.
power
(
x
,
1.
/
3.
)
else
:
return
7.787
*
x
+
16.
/
116.
# calculation of L, a and b
L
=
116.
*
(
f
(
Y
/
self
.
Yn
)
-
(
16.
/
116.
)
)
a
=
500.
*
(
f
(
X
/
self
.
Xn
)
-
f
(
Y
/
self
.
Yn
)
)
b
=
200.
*
(
f
(
Y
/
self
.
Yn
)
-
f
(
Z
/
self
.
Zn
)
)
return
np
.
array
([
L
,
a
,
b
])
#-
def
Lab2rgb
(
self
,
Lab
):
"""
Conversion of CIELAB to RGB
"""
# unpack the Lab-array
L
,
a
,
b
=
Lab
.
tolist
()
# helper function
def
finverse
(
x
):
xlim
=
0.008856
a
=
7.787
b
=
16.
/
116.
ylim
=
a
*
xlim
+
b
if
x
>
ylim
:
return
np
.
power
(
x
,
3
)
else
:
return
(
x
-
b
)
/
a
# calculation of X, Y and Z
X
=
self
.
Xn
*
finverse
(
(
a
/
500.
)
+
(
L
+
16.
)
/
116.
)
Y
=
self
.
Yn
*
finverse
(
(
L
+
16.
)
/
116.
)
Z
=
self
.
Zn
*
finverse
(
(
L
+
16.
)
/
116.
-
(
b
/
200.
)
)
# conversion of XYZ to RGB
return
self
.
xyz2rgb
(
np
.
array
([
X
,
Y
,
Z
]))
#-
def
Lab2Msh
(
self
,
Lab
):
"""
Conversion of CIELAB to Msh
"""
# unpack the Lab-array
L
,
a
,
b
=
Lab
.
tolist
()
# calculation of M, s and h
M
=
np
.
sqrt
(
np
.
sum
(
np
.
power
(
Lab
,
2
)))
s
=
np
.
arccos
(
L
/
M
)
h
=
np
.
arctan2
(
b
,
a
)
return
np
.
array
([
M
,
s
,
h
])
#-
def
Msh2Lab
(
self
,
Msh
):
"""
Conversion of Msh to CIELAB
"""
# unpack the Msh-array
M
,
s
,
h
=
Msh
.
tolist
()
# calculation of L, a and b
L
=
M
*
np
.
cos
(
s
)
a
=
M
*
np
.
sin
(
s
)
*
np
.
cos
(
h
)
b
=
M
*
np
.
sin
(
s
)
*
np
.
sin
(
h
)
return
np
.
array
([
L
,
a
,
b
])
#-
def
rgb2Msh
(
self
,
RGB
):
"""
Direct conversion of RGB to Msh.
"""
return
self
.
Lab2Msh
(
self
.
rgb2Lab
(
RGB
))
#-
def
Msh2rgb
(
self
,
Msh
):
"""
Direct conversion of Msh to RGB.
"""
return
self
.
Lab2rgb
(
self
.
Msh2Lab
(
Msh
))
#-
def
adjustHue
(
self
,
MshSat
,
Munsat
):
"""
Function to provide an adjusted hue when interpolating to an
unsaturated color in Msh space.
"""
# unpack the saturated Msh-array
Msat
,
ssat
,
hsat
=
MshSat
.
tolist
()
if
Msat
>=
Munsat
:
return
hsat
else
:
hSpin
=
ssat
*
np
.
sqrt
(
Munsat
**
2
-
Msat
**
2
)
/
\
(
Msat
*
np
.
sin
(
ssat
))
if
hsat
>
-
np
.
pi
/
3
:
return
hsat
+
hSpin
else
:
return
hsat
-
hSpin
#-
def
interpolateColor
(
self
,
RGB1
,
RGB2
,
interp
):
"""
Interpolation algorithm to automatically create continuous diverging
color maps.
"""
# convert RGB to Msh and unpack
Msh1
=
self
.
rgb2Msh
(
RGB1
)
M1
,
s1
,
h1
=
Msh1
.
tolist
()
Msh2
=
self
.
rgb2Msh
(
RGB2
)
M2
,
s2
,
h2
=
Msh2
.
tolist
()
# If points saturated and distinct, place white in middle
if
(
s1
>
0.05
)
and
(
s2
>
0.05
)
and
(
np
.
abs
(
h1
-
h2
)
>
np
.
pi
/
3.
):
Mmid
=
max
([
M1
,
M2
,
88.
])
if
interp
<
0.5
:
M2
=
Mmid
s2
=
0.
h2
=
0.
interp
=
2
*
interp
else
:
M1
=
Mmid
s1
=
0.
h1
=
0.
interp
=
2
*
interp
-
1.
# Adjust hue of unsaturated colors
if
(
s1
<
0.05
)
and
(
s2
>
0.05
):
h1
=
self
.
adjustHue
(
np
.
array
([
M2
,
s2
,
h2
]),
M1
)
elif
(
s2
<
0.05
)
and
(
s1
>
0.05
):
h2
=
self
.
adjustHue
(
np
.
array
([
M1
,
s1
,
h1
]),
M2
)
# Linear interpolation on adjusted control points
MshMid
=
(
1
-
interp
)
*
np
.
array
([
M1
,
s1
,
h1
])
+
\
interp
*
np
.
array
([
M2
,
s2
,
h2
])
return
self
.
Msh2rgb
(
MshMid
)
#-
def
generateColorMap
(
self
,
RGB1
,
RGB2
,
divide
):
"""
Generate the complete diverging color map using the Moreland-technique
from RGB1 to RGB2, placing
"
white
"
in the middle. The number of points
given by
"
numPoints
"
controls the resolution of the colormap. The
optional parameter
"
divide
"
gives the possibility to scale the whole
colormap, for example to have float values from 0 to 1.
"""
# calculate
scalars
=
np
.
linspace
(
0.
,
1.
,
self
.
numColors
)
RGBs
=
np
.
zeros
((
self
.
numColors
,
3
))
for
i
,
s
in
enumerate
(
scalars
):
RGBs
[
i
,:]
=
self
.
interpolateColor
(
RGB1
,
RGB2
,
s
)
return
RGBs
/
divide
#-
def
generateColorMapLab
(
self
,
RGB1
,
RGB2
,
divide
):
"""
Generate the complete diverging color map using a transition from
Lab1 to Lab2, transitioning true RGB-white. The number of points
given by
"
numPoints
"
controls the resolution of the colormap. The
optional parameter
"
divide
"
gives the possibility to scale the whole
colormap, for example to have float values from 0 to 1.
"""
# convert to Lab-space
Lab1
=
self
.
rgb2Lab
(
RGB1
)
Lab2
=
self
.
rgb2Lab
(
RGB2
)
LabWhite
=
np
.
array
([
100.
,
0.
,
0.
])
# initialize the resulting arrays
Lab
=
np
.
zeros
((
self
.
numColors
,
3
))
RGBs
=
np
.
zeros
((
self
.
numColors
,
3
))
N2
=
np
.
floor
(
self
.
numColors
/
2.
)
# calculate
for
i
in
range
(
3
):
Lab
[
0
:
N2
+
1
,
i
]
=
np
.
linspace
(
Lab1
[
i
],
LabWhite
[
i
],
N2
+
1
)
Lab
[
N2
:,
i
]
=
np
.
linspace
(
LabWhite
[
i
],
Lab2
[
i
],
N2
+
1
)
for
i
,
l
in
enumerate
(
Lab
):
RGBs
[
i
,:]
=
self
.
Lab2rgb
(
l
)
return
RGBs
/
divide
#-
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment