Skip to content
Snippets Groups Projects
Select Git revision
  • trunk
  • RELEASE_6_5_DRIVEDB
  • RELEASE_6_6_DRIVEDB
  • RELEASE_7_0_DRIVEDB
  • RELEASE_7_2_DRIVEDB
  • RELEASE_7_3_DRIVEDB
  • RELEASE_6_0_DRIVEDB
  • RELEASE_6_1_DRIVEDB
  • RELEASE_6_2_DRIVEDB
  • RELEASE_6_3_DRIVEDB
  • RELEASE_6_4_DRIVEDB
  • tags/RELEASE_7_4
  • tags/RELEASE_7_3
  • RELEASE_5_41_DRIVEDB
  • RELEASE_5_42_DRIVEDB
  • RELEASE_5_43_DRIVEDB
  • tags/RELEASE_7_2
  • tags/RELEASE_7_1
  • tags/RELEASE_7_0
  • RELEASE_5_40_DRIVEDB
20 results

atacmds.cpp

Blame
  • atacmds.cpp 84.93 KiB
    /*
     * atacmds.cpp
     * 
     * Home page of code is: http://smartmontools.sourceforge.net
     *
     * Copyright (C) 2002-9 Bruce Allen <smartmontools-support@lists.sourceforge.net>
     * Copyright (C) 2008-9 Christian Franke <smartmontools-support@lists.sourceforge.net>
     * Copyright (C) 1999-2000 Michael Cornwell <cornwell@acm.org>
     * Copyright (C) 2000 Andre Hedrick <andre@linux-ide.org>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2, or (at your option)
     * any later version.
     *
     * You should have received a copy of the GNU General Public License
     * (for example COPYING); if not, write to the Free
     * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     *
     * This code was originally developed as a Senior Thesis by Michael Cornwell
     * at the Concurrent Systems Laboratory (now part of the Storage Systems
     * Research Center), Jack Baskin School of Engineering, University of
     * California, Santa Cruz. http://ssrc.soe.ucsc.edu/
     * 
     */
    
    #include <stdio.h>
    #include <string.h>
    #include <errno.h>
    #include <stdlib.h>
    #include <ctype.h>
    
    #include "config.h"
    #include "int64.h"
    #include "atacmds.h"
    #include "extern.h"
    #include "utility.h"
    #include "dev_ata_cmd_set.h" // for parsed_ata_device
    
    const char * atacmds_cpp_cvsid = "$Id$"
                                     ATACMDS_H_CVSID;
    
    // for passing global control variables
    extern smartmonctrl *con;
    
    #define SMART_CYL_LOW  0x4F
    #define SMART_CYL_HI   0xC2
    
    // SMART RETURN STATUS yields SMART_CYL_HI,SMART_CYL_LOW to indicate drive
    // is healthy and SRET_STATUS_HI_EXCEEDED,SRET_STATUS_MID_EXCEEDED to
    // indicate that a threshhold exceeded condition has been detected.
    // Those values (byte pairs) are placed in ATA register "LBA 23:8".
    #define SRET_STATUS_HI_EXCEEDED 0x2C
    #define SRET_STATUS_MID_EXCEEDED 0xF4
    
    // These Drive Identity tables are taken from hdparm 5.2, and are also
    // given in the ATA/ATAPI specs for the IDENTIFY DEVICE command.  Note
    // that SMART was first added into the ATA/ATAPI-3 Standard with
    // Revision 3 of the document, July 25, 1995.  Look at the "Document
    // Status" revision commands at the beginning of
    // http://www.t13.org/project/d2008r6.pdf to see this.
    #define NOVAL_0                 0x0000
    #define NOVAL_1                 0xffff
    /* word 81: minor version number */
    #define MINOR_MAX 0x22
    static const char * const minor_str[] = {       /* word 81 value: */
      "Device does not report version",             /* 0x0000       */
      "ATA-1 X3T9.2 781D prior to revision 4",      /* 0x0001       */
      "ATA-1 published, ANSI X3.221-1994",          /* 0x0002       */
      "ATA-1 X3T9.2 781D revision 4",               /* 0x0003       */
      "ATA-2 published, ANSI X3.279-1996",          /* 0x0004       */
      "ATA-2 X3T10 948D prior to revision 2k",      /* 0x0005       */
      "ATA-3 X3T10 2008D revision 1",               /* 0x0006       */ /* SMART NOT INCLUDED */
      "ATA-2 X3T10 948D revision 2k",               /* 0x0007       */
      "ATA-3 X3T10 2008D revision 0",               /* 0x0008       */ 
      "ATA-2 X3T10 948D revision 3",                /* 0x0009       */
      "ATA-3 published, ANSI X3.298-199x",          /* 0x000a       */
      "ATA-3 X3T10 2008D revision 6",               /* 0x000b       */ /* 1st VERSION WITH SMART */
      "ATA-3 X3T13 2008D revision 7 and 7a",        /* 0x000c       */
      "ATA/ATAPI-4 X3T13 1153D revision 6",         /* 0x000d       */
      "ATA/ATAPI-4 T13 1153D revision 13",          /* 0x000e       */
      "ATA/ATAPI-4 X3T13 1153D revision 7",         /* 0x000f       */
      "ATA/ATAPI-4 T13 1153D revision 18",          /* 0x0010       */
      "ATA/ATAPI-4 T13 1153D revision 15",          /* 0x0011       */
      "ATA/ATAPI-4 published, ANSI NCITS 317-1998", /* 0x0012       */
      "ATA/ATAPI-5 T13 1321D revision 3",           /* 0x0013       */
      "ATA/ATAPI-4 T13 1153D revision 14",          /* 0x0014       */
      "ATA/ATAPI-5 T13 1321D revision 1",           /* 0x0015       */
      "ATA/ATAPI-5 published, ANSI NCITS 340-2000", /* 0x0016       */
      "ATA/ATAPI-4 T13 1153D revision 17",          /* 0x0017       */
      "ATA/ATAPI-6 T13 1410D revision 0",           /* 0x0018       */
      "ATA/ATAPI-6 T13 1410D revision 3a",          /* 0x0019       */
      "ATA/ATAPI-7 T13 1532D revision 1",           /* 0x001a       */
      "ATA/ATAPI-6 T13 1410D revision 2",           /* 0x001b       */
      "ATA/ATAPI-6 T13 1410D revision 1",           /* 0x001c       */
      "ATA/ATAPI-7 published, ANSI INCITS 397-2005",/* 0x001d       */
      "ATA/ATAPI-7 T13 1532D revision 0",           /* 0x001e       */
      "reserved",                                   /* 0x001f       */
      "reserved",                                   /* 0x0020       */
      "ATA/ATAPI-7 T13 1532D revision 4a",          /* 0x0021       */
      "ATA/ATAPI-6 published, ANSI INCITS 361-2002" /* 0x0022       */
    };
    
    // NOTE ATA/ATAPI-4 REV 4 was the LAST revision where the device
    // attribute structures were NOT completely vendor specific.  So any
    // disk that is ATA/ATAPI-4 or above can not be trusted to show the
    // vendor values in sensible format.
    
    // Negative values below are because it doesn't support SMART
    static const int actual_ver[] = { 
      /* word 81 value: */
      0,            /* 0x0000       WARNING:        */
      1,            /* 0x0001       WARNING:        */
      1,            /* 0x0002       WARNING:        */
      1,            /* 0x0003       WARNING:        */
      2,            /* 0x0004       WARNING:   This array           */
      2,            /* 0x0005       WARNING:   corresponds          */
      -3, /*<== */  /* 0x0006       WARNING:   *exactly*            */
      2,            /* 0x0007       WARNING:   to the ATA/          */
      -3, /*<== */  /* 0x0008       WARNING:   ATAPI version        */
      2,            /* 0x0009       WARNING:   listed in            */
      3,            /* 0x000a       WARNING:   the                  */
      3,            /* 0x000b       WARNING:   minor_str            */
      3,            /* 0x000c       WARNING:   array                */
      4,            /* 0x000d       WARNING:   above.               */
      4,            /* 0x000e       WARNING:                        */
      4,            /* 0x000f       WARNING:   If you change        */
      4,            /* 0x0010       WARNING:   that one,            */
      4,            /* 0x0011       WARNING:   change this one      */
      4,            /* 0x0012       WARNING:   too!!!               */
      5,            /* 0x0013       WARNING:        */
      4,            /* 0x0014       WARNING:        */
      5,            /* 0x0015       WARNING:        */
      5,            /* 0x0016       WARNING:        */
      4,            /* 0x0017       WARNING:        */
      6,            /* 0x0018       WARNING:        */
      6,            /* 0x0019       WARNING:        */
      7,            /* 0x001a       WARNING:        */
      6,            /* 0x001b       WARNING:        */
      6,            /* 0x001c       WARNING:        */
      7,            /* 0x001d       WARNING:        */
      7,            /* 0x001e       WARNING:        */
      0,            /* 0x001f       WARNING:        */
      0,            /* 0x0020       WARNING:        */
      7,            /* 0x0021       WARNING:        */
      6             /* 0x0022       WARNING:        */
    };
    
    // Get ID and increase flag of current pending or offline
    // uncorrectable attribute.
    unsigned char get_unc_attr_id(bool offline, const ata_vendor_attr_defs & defs,
                                  bool & increase)
    {
      unsigned char id = (!offline ? 197 : 198);
      increase = !!(defs[id].flags & ATTRFLAG_INCREASING);
      return id;
    }
    
    #if 0 // TODO: never used
    // This are the meanings of the Self-test failure checkpoint byte.
    // This is in the self-test log at offset 4 bytes into the self-test
    // descriptor and in the SMART READ DATA structure at byte offset
    // 371. These codes are not well documented.  The meanings returned by
    // this routine are used (at least) by Maxtor and IBM. Returns NULL if
    // not recognized.  Currently the maximum length is 15 bytes.
    const char *SelfTestFailureCodeName(unsigned char which){
      
      switch (which) {
      case 0:
        return "Write_Test";
      case 1:
        return "Servo_Basic";
      case 2:
        return "Servo_Random";
      case 3:
        return "G-list_Scan";
      case 4:
        return "Handling_Damage";
      case 5:
        return "Read_Scan";
      default:
        return NULL;
      }
    }
    #endif
    
    
    // Table of raw print format names
    struct format_name_entry
    {
      const char * name;
      ata_attr_raw_format format;
    };
    
    const format_name_entry format_names[] = {
      {"raw8"           , RAWFMT_RAW8},
      {"raw16"          , RAWFMT_RAW16},
      {"raw48"          , RAWFMT_RAW48},
      {"hex48"          , RAWFMT_HEX48},
      {"raw64"          , RAWFMT_RAW64},
      {"hex64"          , RAWFMT_HEX64},
      {"raw16(raw16)"   , RAWFMT_RAW16_OPT_RAW16},
      {"raw16(avg16)"   , RAWFMT_RAW16_OPT_AVG16},
      {"raw24/raw24"    , RAWFMT_RAW24_RAW24},
      {"sec2hour"       , RAWFMT_SEC2HOUR},
      {"min2hour"       , RAWFMT_MIN2HOUR},
      {"halfmin2hour"   , RAWFMT_HALFMIN2HOUR},
      {"tempminmax"     , RAWFMT_TEMPMINMAX},
      {"temp10x"        , RAWFMT_TEMP10X},
    };
    
    const unsigned num_format_names = sizeof(format_names)/sizeof(format_names[0]);
    
    // Table to map old to new '-v' option arguments
    const char * map_old_vendor_opts[][2] = {
      {  "9,halfminutes"              , "9,halfmin2hour,Power_On_Half_Minutes"},
      {  "9,minutes"                  , "9,min2hour,Power_On_Minutes"},
      {  "9,seconds"                  , "9,sec2hour,Power_On_Seconds"},
      {  "9,temp"                     , "9,tempminmax,Temperature_Celsius"},
      {"192,emergencyretractcyclect"  , "192,raw48,Emerg_Retract_Cycle_Ct"},
      {"193,loadunload"               , "193,raw24/raw24"},
      {"194,10xCelsius"               , "194,temp10x,Temperature_Celsius_x10"},
      {"194,unknown"                  , "194,raw48,Unknown_Attribute"},
      {"197,increasing"               , "197,raw48+,Total_Pending_Sectors"}, // '+' sets flag
      {"198,offlinescanuncsectorct"   , "198,raw48,Offline_Scan_UNC_SectCt"},
      {"198,increasing"               , "198,raw48+,Total_Offl_Uncorrectabl"}, // '+' sets flag
      {"200,writeerrorcount"          , "200,raw48,Write_Error_Count"},
      {"201,detectedtacount"          , "201,raw48,Detected_TA_Count"},
      {"220,temp"                     , "220,raw48,Temperature_Celsius"},
    };
    
    const unsigned num_old_vendor_opts = sizeof(map_old_vendor_opts)/sizeof(map_old_vendor_opts[0]);
    
    // Parse vendor attribute display def (-v option).
    // Return false on error.
    bool parse_attribute_def(const char * opt, ata_vendor_attr_defs & defs,
                             ata_vendor_def_prior priority)
    {
      // Map old -> new options
      unsigned i;
      for (i = 0; i < num_old_vendor_opts; i++) {
        if (!strcmp(opt, map_old_vendor_opts[i][0])) {
          opt = map_old_vendor_opts[i][1];
          break;
        }
      }
    
      // Parse option
      int len = strlen(opt);
      int id = 0, n1 = -1, n2 = -1;
      char fmtname[32+1], attrname[32+1];
      if (opt[0] == 'N') {
        // "N,format"
        if (!(   sscanf(opt, "N,%32[^,]%n,%32[^,]%n", fmtname, &n1, attrname, &n2) >= 1
              && (n1 == len || n2 == len)))
          return false;
      }
      else {
        // "id,format[+][,name]"
        if (!(   sscanf(opt, "%d,%32[^,]%n,%32[^,]%n", &id, fmtname, &n1, attrname, &n2) >= 2
              && 1 <= id && id <= 255 && (n1 == len || n2 == len)))
          return false;
      }
      if (n1 == len)
        attrname[0] = 0;
    
      unsigned flags = 0;
      // For "-v 19[78],increasing" above
      if (fmtname[strlen(fmtname)-1] == '+') {
        fmtname[strlen(fmtname)-1] = 0;
        flags = ATTRFLAG_INCREASING;
      }
    
      // Find format name
      for (i = 0; ; i++) {
        if (i >= num_format_names)
          return false; // Not found
        if (!strcmp(fmtname, format_names[i].name))
          break;
      }
      ata_attr_raw_format format = format_names[i].format;
    
      // 64-bit formats use the normalized value bytes.
      if (format == RAWFMT_RAW64 || format == RAWFMT_HEX64)
        flags |= ATTRFLAG_NO_NORMVAL;
    
      if (!id) {
        // "N,format" -> set format for all entries
        for (i = 0; i < MAX_ATTRIBUTE_NUM; i++) {
          if (defs[i].priority >= priority)
            continue;
          if (attrname[0])
            defs[i].name = attrname;
          defs[i].priority = priority;
          defs[i].raw_format = format;
          defs[i].flags = flags;
        }
      }
      else if (defs[id].priority <= priority) {
        // "id,format[,name]"
        if (attrname[0])
          defs[id].name = attrname;
        defs[id].raw_format = format;
        defs[id].priority = priority;
        defs[id].flags = flags;
      }
    
      return true;
    }
    
    
    // Return a multiline string containing a list of valid arguments for
    // parse_attribute_def().  The strings are preceeded by tabs and followed
    // (except for the last) by newlines.
    std::string create_vendor_attribute_arg_list()
    {
      std::string s;
      unsigned i;
      for (i = 0; i < num_format_names; i++)
        s += strprintf("%s\tN,%s[,ATTR_NAME]",
          (i>0 ? "\n" : ""), format_names[i].name);
      for (i = 0; i < num_old_vendor_opts; i++)
        s += strprintf("\n\t%s", map_old_vendor_opts[i][0]);
      return s;
    }
    
    // swap two bytes.  Point to low address
    void swap2(char *location){
      char tmp=*location;
      *location=*(location+1);
      *(location+1)=tmp;
      return;
    }
    
    // swap four bytes.  Point to low address
    void swap4(char *location){
      char tmp=*location;
      *location=*(location+3);
      *(location+3)=tmp;
      swap2(location+1);
      return;
    }
    
    // swap eight bytes.  Points to low address
    void swap8(char *location){
      char tmp=*location;
      *location=*(location+7);
      *(location+7)=tmp;
      tmp=*(location+1);
      *(location+1)=*(location+6);
      *(location+6)=tmp;
      swap4(location+2);
      return;
    }
    
    // Invalidate serial number and adjust checksum in IDENTIFY data
    static void invalidate_serno(ata_identify_device * id){
      unsigned char sum = 0;
      for (unsigned i = 0; i < sizeof(id->serial_no); i++) {
        sum += id->serial_no[i]; sum -= id->serial_no[i] = 'X';
      }
    #ifndef __NetBSD__
      bool must_swap = !!isbigendian();
      if (must_swap)
        swapx(id->words088_255+255-88);
    #endif
      if ((id->words088_255[255-88] & 0x00ff) == 0x00a5)
        id->words088_255[255-88] += sum << 8;
    #ifndef __NetBSD__
      if (must_swap)
        swapx(id->words088_255+255-88);
    #endif
    }
    
    static const char * const commandstrings[]={
      "SMART ENABLE",
      "SMART DISABLE",
      "SMART AUTOMATIC ATTRIBUTE SAVE",
      "SMART IMMEDIATE OFFLINE",
      "SMART AUTO OFFLINE",
      "SMART STATUS",
      "SMART STATUS CHECK",
      "SMART READ ATTRIBUTE VALUES",
      "SMART READ ATTRIBUTE THRESHOLDS",
      "SMART READ LOG",
      "IDENTIFY DEVICE",
      "IDENTIFY PACKET DEVICE",
      "CHECK POWER MODE",
      "SMART WRITE LOG",
      "WARNING (UNDEFINED COMMAND -- CONTACT DEVELOPERS AT " PACKAGE_BUGREPORT ")\n"
    };
    
    
    static const char * preg(const ata_register & r, char * buf)
    {
      if (!r.is_set())
        //return "n/a ";
        return "....";
      sprintf(buf, "0x%02x", r.val()); return buf;
    }
    
    void print_regs(const char * prefix, const ata_in_regs & r, const char * suffix = "\n")
    {
      char bufs[7][4+1+13];
      pout("%s FR=%s, SC=%s, LL=%s, LM=%s, LH=%s, DEV=%s, CMD=%s%s", prefix,
        preg(r.features, bufs[0]), preg(r.sector_count, bufs[1]), preg(r.lba_low, bufs[2]),
        preg(r.lba_mid, bufs[3]), preg(r.lba_high, bufs[4]), preg(r.device, bufs[5]),
        preg(r.command, bufs[6]), suffix);
    }
    
    void print_regs(const char * prefix, const ata_out_regs & r, const char * suffix = "\n")
    {
      char bufs[7][4+1+13];
      pout("%sERR=%s, SC=%s, LL=%s, LM=%s, LH=%s, DEV=%s, STS=%s%s", prefix,
        preg(r.error, bufs[0]), preg(r.sector_count, bufs[1]), preg(r.lba_low, bufs[2]),
        preg(r.lba_mid, bufs[3]), preg(r.lba_high, bufs[4]), preg(r.device, bufs[5]),
        preg(r.status, bufs[6]), suffix);
    }
    
    static void prettyprint(const unsigned char *p, const char *name){
      pout("\n===== [%s] DATA START (BASE-16) =====\n", name);
      for (int i=0; i<512; i+=16, p+=16)
        // print complete line to avoid slow tty output and extra lines in syslog.
        pout("%03d-%03d: %02x %02x %02x %02x %02x %02x %02x %02x "
                        "%02x %02x %02x %02x %02x %02x %02x %02x\n",
             i, i+16-1,
             p[ 0], p[ 1], p[ 2], p[ 3], p[ 4], p[ 5], p[ 6], p[ 7],
             p[ 8], p[ 9], p[10], p[11], p[12], p[13], p[14], p[15]);
      pout("===== [%s] DATA END (512 Bytes) =====\n\n", name);
    }
    
    // This function provides the pretty-print reporting for SMART
    // commands: it implements the various -r "reporting" options for ATA
    // ioctls.
    int smartcommandhandler(ata_device * device, smart_command_set command, int select, char *data){
      // TODO: Rework old stuff below
      // This conditional is true for commands that return data
      int getsdata=(command==PIDENTIFY || 
                    command==IDENTIFY || 
                    command==READ_LOG || 
                    command==READ_THRESHOLDS || 
                    command==READ_VALUES ||
                    command==CHECK_POWER_MODE);
    
      int sendsdata=(command==WRITE_LOG);
      
      // If reporting is enabled, say what the command will be before it's executed
      if (con->reportataioctl){
              // conditional is true for commands that use parameters
              int usesparam=(command==READ_LOG || 
                             command==AUTO_OFFLINE || 
                             command==AUTOSAVE || 
                             command==IMMEDIATE_OFFLINE ||
                             command==WRITE_LOG);
                      
        pout("\nREPORT-IOCTL: Device=%s Command=%s", device->get_dev_name(), commandstrings[command]);
        if (usesparam)
          pout(" InputParameter=%d\n", select);
        else
          pout("\n");
      }
      
      if ((getsdata || sendsdata) && !data){
        pout("REPORT-IOCTL: Unable to execute command %s : data destination address is NULL\n", commandstrings[command]);
        return -1;
      }
      
      // The reporting is cleaner, and we will find coding bugs faster, if
      // the commands that failed clearly return empty (zeroed) data
      // structures
      if (getsdata) {
        if (command==CHECK_POWER_MODE)
          data[0]=0;
        else
          memset(data, '\0', 512);
      }
    
    
      // if requested, pretty-print the input data structure
      if (con->reportataioctl>1 && sendsdata)
        //pout("REPORT-IOCTL: Device=%s Command=%s\n", device->get_dev_name(), commandstrings[command]);
        prettyprint((unsigned char *)data, commandstrings[command]);
    
      // now execute the command
      int retval = -1;
      {
        ata_cmd_in in;
        // Set common register values
        switch (command) {
          default: // SMART commands
            in.in_regs.command = ATA_SMART_CMD;
            in.in_regs.lba_high = SMART_CYL_HI; in.in_regs.lba_mid = SMART_CYL_LOW;
            break;
          case IDENTIFY: case PIDENTIFY: case CHECK_POWER_MODE: // Non SMART commands
            break;
        }
        // Set specific values
        switch (command) {
          case IDENTIFY:
            in.in_regs.command = ATA_IDENTIFY_DEVICE;
            in.set_data_in(data, 1);
            break;
          case PIDENTIFY:
            in.in_regs.command = ATA_IDENTIFY_PACKET_DEVICE;
            in.set_data_in(data, 1);
            break;
          case CHECK_POWER_MODE:
            in.in_regs.command = ATA_CHECK_POWER_MODE;
            in.out_needed.sector_count = true; // Powermode returned here
            break;
          case READ_VALUES:
            in.in_regs.features = ATA_SMART_READ_VALUES;
            in.set_data_in(data, 1);
            break;
          case READ_THRESHOLDS:
            in.in_regs.features = ATA_SMART_READ_THRESHOLDS;
            in.in_regs.lba_low = 1; // TODO: CORRECT ???
            in.set_data_in(data, 1);
            break;
          case READ_LOG:
            in.in_regs.features = ATA_SMART_READ_LOG_SECTOR;
            in.in_regs.lba_low = select;
            in.set_data_in(data, 1);
            break;
          case WRITE_LOG:
            in.in_regs.features = ATA_SMART_WRITE_LOG_SECTOR;
            in.in_regs.lba_low = select;
            in.set_data_out(data, 1);
            break;
          case ENABLE:
            in.in_regs.features = ATA_SMART_ENABLE;
            in.in_regs.lba_low = 1; // TODO: CORRECT ???
            break;
          case DISABLE:
            in.in_regs.features = ATA_SMART_DISABLE;
            in.in_regs.lba_low = 1;  // TODO: CORRECT ???
            break;
          case STATUS_CHECK:
            in.out_needed.lba_high = in.out_needed.lba_mid = true; // Status returned here
          case STATUS:
            in.in_regs.features = ATA_SMART_STATUS;
            break;
          case AUTO_OFFLINE:
            in.in_regs.features = ATA_SMART_AUTO_OFFLINE;
            in.in_regs.sector_count = select;  // Caution: Non-DATA command!
            break;
          case AUTOSAVE:
            in.in_regs.features = ATA_SMART_AUTOSAVE;
            in.in_regs.sector_count = select;  // Caution: Non-DATA command!
            break;
          case IMMEDIATE_OFFLINE:
            in.in_regs.features = ATA_SMART_IMMEDIATE_OFFLINE;
            in.in_regs.lba_low = select;
            break;
          default:
            pout("Unrecognized command %d in smartcommandhandler()\n"
                 "Please contact " PACKAGE_BUGREPORT "\n", command);
            device->set_err(ENOSYS);
            errno = ENOSYS;
            return -1;
        }
    
        if (con->reportataioctl)
          print_regs(" Input:  ", in.in_regs,
            (in.direction==ata_cmd_in::data_in ? " IN\n":
             in.direction==ata_cmd_in::data_out ? " OUT\n":"\n"));
    
        ata_cmd_out out;
        bool ok = device->ata_pass_through(in, out);
    
        if (con->reportataioctl && out.out_regs.is_set())
          print_regs(" Output: ", out.out_regs);
    
        if (ok) switch (command) {
          default:
            retval = 0;
            break;
          case CHECK_POWER_MODE:
            data[0] = out.out_regs.sector_count;
            retval = 0;
            break;
          case STATUS_CHECK:
            // Cyl low and Cyl high unchanged means "Good SMART status"
            if ((out.out_regs.lba_high == SMART_CYL_HI) &&
                (out.out_regs.lba_mid == SMART_CYL_LOW))
              retval = 0;
            // These values mean "Bad SMART status"
            else if ((out.out_regs.lba_high == SRET_STATUS_HI_EXCEEDED) &&
                     (out.out_regs.lba_mid == SRET_STATUS_MID_EXCEEDED))
              retval = 1;
            else if (out.out_regs.lba_mid == SMART_CYL_LOW) {
              retval = 0;
              if (con->reportataioctl)
                pout("SMART STATUS RETURN: half healthy response sequence, "
                     "probable SAT/USB truncation\n");
              } else if (out.out_regs.lba_mid == SRET_STATUS_MID_EXCEEDED) {
              retval = 1;
              if (con->reportataioctl)
                pout("SMART STATUS RETURN: half unhealthy response sequence, "
                     "probable SAT/USB truncation\n");
            } else {
              // We haven't gotten output that makes sense; print out some debugging info
              pout("Error SMART Status command failed\n"
                   "Please get assistance from %s\n", PACKAGE_HOMEPAGE);
              errno = EIO;
              retval = -1;
            }
            break;
        }
      }
    
      // If requested, invalidate serial number before any printing is done
      if ((command == IDENTIFY || command == PIDENTIFY) && !retval && con->dont_print_serial)
        invalidate_serno((ata_identify_device *)data);
    
      // If reporting is enabled, say what output was produced by the command
      if (con->reportataioctl){
        if (device->get_errno())
          pout("REPORT-IOCTL: Device=%s Command=%s returned %d errno=%d [%s]\n",
               device->get_dev_name(), commandstrings[command], retval,
               device->get_errno(), device->get_errmsg());
        else
          pout("REPORT-IOCTL: Device=%s Command=%s returned %d\n",
               device->get_dev_name(), commandstrings[command], retval);
        
        // if requested, pretty-print the output data structure
        if (con->reportataioctl>1 && getsdata) {
          if (command==CHECK_POWER_MODE)
    	pout("Sector Count Register (BASE-16): %02x\n", (unsigned char)(*data));
          else
    	prettyprint((unsigned char *)data, commandstrings[command]);
        }
      }
    
      errno = device->get_errno(); // TODO: Callers should not call syserror()
      return retval;
    }
    
    // Get number of sectors from IDENTIFY sector. If the drive doesn't
    // support LBA addressing or has no user writable sectors
    // (eg, CDROM or DVD) then routine returns zero.
    uint64_t get_num_sectors(const ata_identify_device * drive)
    {
      unsigned short command_set_2  = drive->command_set_2;
      unsigned short capabilities_0 = drive->words047_079[49-47];
      unsigned short sects_16       = drive->words047_079[60-47];
      unsigned short sects_32       = drive->words047_079[61-47];
      unsigned short lba_16         = drive->words088_255[100-88];
      unsigned short lba_32         = drive->words088_255[101-88];
      unsigned short lba_48         = drive->words088_255[102-88];
      unsigned short lba_64         = drive->words088_255[103-88];
    
      // LBA support?
      if (!(capabilities_0 & 0x0200))
        return 0; // No
    
      // if drive supports LBA addressing, determine 32-bit LBA capacity
      uint64_t lba32 = (unsigned int)sects_32 << 16 |
                       (unsigned int)sects_16 << 0  ;
    
      uint64_t lba64 = 0;
      // if drive supports 48-bit addressing, determine THAT capacity
      if ((command_set_2 & 0xc000) == 0x4000 && (command_set_2 & 0x0400))
          lba64 = (uint64_t)lba_64 << 48 |
                  (uint64_t)lba_48 << 32 |
                  (uint64_t)lba_32 << 16 |
                  (uint64_t)lba_16 << 0  ;
    
      // return the larger of the two possible capacities
      return (lba32 > lba64 ? lba32 : lba64);
    }
    
    // This function computes the checksum of a single disk sector (512
    // bytes).  Returns zero if checksum is OK, nonzero if the checksum is
    // incorrect.  The size (512) is correct for all SMART structures.
    unsigned char checksum(const void * data)
    {
      unsigned char sum = 0;
      for (int i = 0; i < 512; i++)
        sum += ((const unsigned char *)data)[i];
      return sum;
    }
    
    // Copies n bytes (or n-1 if n is odd) from in to out, but swaps adjacents
    // bytes.
    static void swapbytes(char * out, const char * in, size_t n)
    {
      for (size_t i = 0; i < n; i += 2) {
        out[i]   = in[i+1];
        out[i+1] = in[i];
      }
    }
    
    // Copies in to out, but removes leading and trailing whitespace.
    static void trim(char * out, const char * in)
    {
      // Find the first non-space character (maybe none).
      int first = -1;
      int i;
      for (i = 0; in[i]; i++)
        if (!isspace((int)in[i])) {
          first = i;
          break;
        }
    
      if (first == -1) {
        // There are no non-space characters.
        out[0] = '\0';
        return;
      }
    
      // Find the last non-space character.
      for (i = strlen(in)-1; i >= first && isspace((int)in[i]); i--)
        ;
      int last = i;
    
      strncpy(out, in+first, last-first+1);
      out[last-first+1] = '\0';
    }
    
    // Convenience function for formatting strings from ata_identify_device
    void format_ata_string(char * out, const char * in, int n, bool fix_swap)
    {
      bool must_swap = !fix_swap;
    #ifdef __NetBSD__
      /* NetBSD kernel delivers IDENTIFY data in host byte order (but all else is LE) */
      if (isbigendian())
        must_swap = !must_swap;
    #endif
    
      char tmp[65];
      n = n > 64 ? 64 : n;
      if (!must_swap)
        strncpy(tmp, in, n);
      else
        swapbytes(tmp, in, n);
      tmp[n] = '\0';
      trim(out, tmp);
    }
    
    // returns -1 if command fails or the device is in Sleep mode, else
    // value of Sector Count register.  Sector Count result values:
    //   00h device is in Standby mode. 
    //   80h device is in Idle mode.
    //   FFh device is in Active mode or Idle mode.
    
    int ataCheckPowerMode(ata_device * device) {
      unsigned char result;
    
      if ((smartcommandhandler(device, CHECK_POWER_MODE, 0, (char *)&result)))
        return -1;
    
      if (result!=0 && result!=0x80 && result!=0xff)
        pout("ataCheckPowerMode(): ATA CHECK POWER MODE returned unknown Sector Count Register value %02x\n", result);
    
      return (int)result;
    }
    
    
    
    
    // Reads current Device Identity info (512 bytes) into buf.  Returns 0
    // if all OK.  Returns -1 if no ATA Device identity can be
    // established.  Returns >0 if Device is ATA Packet Device (not SMART
    // capable).  The value of the integer helps identify the type of
    // Packet device, which is useful so that the user can connect the
    // formal device number with whatever object is inside their computer.
    int ataReadHDIdentity (ata_device * device, struct ata_identify_device *buf){
      unsigned short *rawshort=(unsigned short *)buf;
      unsigned char  *rawbyte =(unsigned char  *)buf;
    
      // See if device responds either to IDENTIFY DEVICE or IDENTIFY
      // PACKET DEVICE
      if ((smartcommandhandler(device, IDENTIFY, 0, (char *)buf))){
        if (smartcommandhandler(device, PIDENTIFY, 0, (char *)buf)){
          return -1; 
        }
      }
    
    #ifndef __NetBSD__
      // if machine is big-endian, swap byte order as needed
      // NetBSD kernel delivers IDENTIFY data in host byte order
      if (isbigendian()){
        int i;
        
        // swap various capability words that are needed
        for (i=0; i<33; i++)
          swap2((char *)(buf->words047_079+i));
        
        for (i=80; i<=87; i++)
          swap2((char *)(rawshort+i));
        
        for (i=0; i<168; i++)
          swap2((char *)(buf->words088_255+i));
      }
    #endif
      
      // If there is a checksum there, validate it
      if ((rawshort[255] & 0x00ff) == 0x00a5 && checksum(rawbyte))
        checksumwarning("Drive Identity Structure");
      
      // If this is a PACKET DEVICE, return device type
      if (rawbyte[1] & 0x80)
        return 1+(rawbyte[1] & 0x1f);
      
      // Not a PACKET DEVICE
      return 0;
    }
    
    // Returns ATA version as an integer, and a pointer to a string
    // describing which revision.  Note that Revision 0 of ATA-3 does NOT
    // support SMART.  For this one case we return -3 rather than +3 as
    // the version number.  See notes above.
    int ataVersionInfo(const char ** description, const ata_identify_device * drive, unsigned short * minor)
    {
      // check that arrays at the top of this file are defined
      // consistently
      if (sizeof(minor_str) != sizeof(char *)*(1+MINOR_MAX)){
        pout("Internal error in ataVersionInfo().  minor_str[] size %d\n"
             "is not consistent with value of MINOR_MAX+1 = %d\n", 
             (int)(sizeof(minor_str)/sizeof(char *)), MINOR_MAX+1);
        fflush(NULL);
        abort();
      }
      if (sizeof(actual_ver) != sizeof(int)*(1+MINOR_MAX)){
        pout("Internal error in ataVersionInfo().  actual_ver[] size %d\n"
             "is not consistent with value of MINOR_MAX = %d\n",
             (int)(sizeof(actual_ver)/sizeof(int)), MINOR_MAX+1);
        fflush(NULL);
        abort();
      }
    
      // get major and minor ATA revision numbers
      unsigned short major = drive->major_rev_num;
      *minor=drive->minor_rev_num;
      
      // First check if device has ANY ATA version information in it
      if (major==NOVAL_0 || major==NOVAL_1) {
        *description=NULL;
        return -1;
      }
      
      // The minor revision number has more information - try there first
      if (*minor && (*minor<=MINOR_MAX)){
        int std = actual_ver[*minor];
        if (std) {
          *description=minor_str[*minor];
          return std;
        }
      }
    
      // Try new ATA-8 minor revision numbers (Table 31 of T13/1699-D Revision 6)
      // (not in actual_ver/minor_str to avoid large sparse tables)
      const char *desc;
      switch (*minor) {
        case 0x0027: desc = "ATA-8-ACS revision 3c"; break;
        case 0x0028: desc = "ATA-8-ACS revision 6"; break;
        case 0x0029: desc = "ATA-8-ACS revision 4"; break;
        case 0x0033: desc = "ATA-8-ACS revision 3e"; break;
        case 0x0039: desc = "ATA-8-ACS revision 4c"; break;
        case 0x0042: desc = "ATA-8-ACS revision 3f"; break;
        case 0x0052: desc = "ATA-8-ACS revision 3b"; break;
        case 0x0107: desc = "ATA-8-ACS revision 2d"; break;
        default:     desc = 0; break;
      }
      if (desc) {
        *description = desc;
        return 8;
      }
    
      // HDPARM has a very complicated algorithm from here on. Since SMART only
      // exists on ATA-3 and later standards, let's punt on this.  If you don't
      // like it, please fix it.  The code's in CVS.
      int i;
      for (i=15; i>0; i--)
        if (major & (0x1<<i))
          break;
      
      *description=NULL; 
      if (i==0)
        return 1;
      else
        return i;
    }
    
    // returns 1 if SMART supported, 0 if SMART unsupported, -1 if can't tell
    int ataSmartSupport(const ata_identify_device * drive)
    {
      unsigned short word82=drive->command_set_1;
      unsigned short word83=drive->command_set_2;
      
      // check if words 82/83 contain valid info
      if ((word83>>14) == 0x01)
        // return value of SMART support bit 
        return word82 & 0x0001;
      
      // since we can're rely on word 82, we don't know if SMART supported
      return -1;
    }
    
    // returns 1 if SMART enabled, 0 if SMART disabled, -1 if can't tell
    int ataIsSmartEnabled(const ata_identify_device * drive)
    {
      unsigned short word85=drive->cfs_enable_1;
      unsigned short word87=drive->csf_default;
      
      // check if words 85/86/87 contain valid info
      if ((word87>>14) == 0x01)
        // return value of SMART enabled bit
        return word85 & 0x0001;
      
      // Since we can't rely word85, we don't know if SMART is enabled.
      return -1;
    }
    
    
    // Reads SMART attributes into *data
    int ataReadSmartValues(ata_device * device, struct ata_smart_values *data){
      
      if (smartcommandhandler(device, READ_VALUES, 0, (char *)data)){
        syserror("Error SMART Values Read failed");
        return -1;
      }
    
      // compute checksum
      if (checksum(data))
        checksumwarning("SMART Attribute Data Structure");
      
      // swap endian order if needed
      if (isbigendian()){
        int i;
        swap2((char *)&(data->revnumber));
        swap2((char *)&(data->total_time_to_complete_off_line));
        swap2((char *)&(data->smart_capability));
        for (i=0; i<NUMBER_ATA_SMART_ATTRIBUTES; i++){
          struct ata_smart_attribute *x=data->vendor_attributes+i;
          swap2((char *)&(x->flags));
        }
      }
    
      return 0;
    }
    
    
    // This corrects some quantities that are byte reversed in the SMART
    // SELF TEST LOG
    static void fixsamsungselftestlog(ata_smart_selftestlog * data)
    {
      // bytes 508/509 (numbered from 0) swapped (swap of self-test index
      // with one byte of reserved.
      swap2((char *)&(data->mostrecenttest));
    
      // LBA low register (here called 'selftestnumber", containing
      // information about the TYPE of the self-test) is byte swapped with
      // Self-test execution status byte.  These are bytes N, N+1 in the
      // entries.
      for (int i = 0; i < 21; i++)
        swap2((char *)&(data->selftest_struct[i].selftestnumber));
    
      return;
    }
    
    // Reads the Self Test Log (log #6)
    int ataReadSelfTestLog (ata_device * device, ata_smart_selftestlog * data,
                            unsigned char fix_firmwarebug)
    {
    
      // get data from device
      if (smartcommandhandler(device, READ_LOG, 0x06, (char *)data)){
        syserror("Error SMART Error Self-Test Log Read failed");
        return -1;
      }
    
      // compute its checksum, and issue a warning if needed
      if (checksum(data))
        checksumwarning("SMART Self-Test Log Structure");
      
      // fix firmware bugs in self-test log
      if (fix_firmwarebug == FIX_SAMSUNG)
        fixsamsungselftestlog(data);
    
      // swap endian order if needed
      if (isbigendian()){
        int i;
        swap2((char*)&(data->revnumber));
        for (i=0; i<21; i++){
          struct ata_smart_selftestlog_struct *x=data->selftest_struct+i;
          swap2((char *)&(x->timestamp));
          swap4((char *)&(x->lbafirstfailure));
        }
      }
    
      return 0;
    }
    
    // Print checksum warning for multi sector log
    static void check_multi_sector_sum(const void * data, unsigned nsectors, const char * msg)
    {
      unsigned errs = 0;
      for (unsigned i = 0; i < nsectors; i++) {
        if (checksum((const unsigned char *)data + i*512))
          errs++;
      }
      if (errs > 0) {
        if (nsectors == 1)
          checksumwarning(msg);
        else
          checksumwarning(strprintf("%s (%u/%u)", msg, errs, nsectors).c_str());
      }
    }
    
    // Read SMART Extended Self-test Log
    bool ataReadExtSelfTestLog(ata_device * device, ata_smart_extselftestlog * log,
                               unsigned nsectors)
    {
      if (!ataReadLogExt(device, 0x07, 0x00, 0, log, nsectors))
        return false;
    
      check_multi_sector_sum(log, nsectors, "SMART Extended Self-test Log Structure");
    
      if (isbigendian()) {
        swapx(&log->log_desc_index);
        for (unsigned i = 0; i < nsectors; i++) {
          for (unsigned j = 0; j < 19; j++)
            swapx(&log->log_descs[i].timestamp);
        }
      }
      return true;
    }
    
    
    // Read GP Log page(s)
    bool ataReadLogExt(ata_device * device, unsigned char logaddr,
                       unsigned char features, unsigned page,
                       void * data, unsigned nsectors)
    {
      ata_cmd_in in;
      in.in_regs.command      = ATA_READ_LOG_EXT;
      in.in_regs.features     = features; // log specific
      in.set_data_in_48bit(data, nsectors);
      in.in_regs.lba_low      = logaddr;
      in.in_regs.lba_mid_16   = page;
    
      if (!device->ata_pass_through(in)) { // TODO: Debug output
        if (nsectors <= 1) {
          pout("ATA_READ_LOG_EXT (addr=0x%02x:0x%02x, page=%u, n=%u) failed: %s\n",
               logaddr, features, page, nsectors, device->get_errmsg());
          return false;
        }
    
        // Recurse to retry with single sectors,
        // multi-sector reads may not be supported by ioctl.
        for (unsigned i = 0; i < nsectors; i++) {
          if (!ataReadLogExt(device, logaddr,
                             features, page + i,
                             (char *)data + 512*i, 1))
            return false;
        }
      }
    
      return true;
    }
    
    // Read SMART Log page(s)
    bool ataReadSmartLog(ata_device * device, unsigned char logaddr,
                         void * data, unsigned nsectors)
    {
      ata_cmd_in in;
      in.in_regs.command  = ATA_SMART_CMD;
      in.in_regs.features = ATA_SMART_READ_LOG_SECTOR;
      in.set_data_in(data, nsectors);
      in.in_regs.lba_high = SMART_CYL_HI;
      in.in_regs.lba_mid  = SMART_CYL_LOW;
      in.in_regs.lba_low  = logaddr;
    
      if (!device->ata_pass_through(in)) { // TODO: Debug output
        pout("ATA_SMART_READ_LOG failed: %s\n", device->get_errmsg());
        return false;
      }
      return true;
    }
    
    
    
    // Reads the SMART or GPL Log Directory (log #0)
    int ataReadLogDirectory(ata_device * device, ata_smart_log_directory * data, bool gpl)
    {
      if (!gpl) { // SMART Log directory
        if (smartcommandhandler(device, READ_LOG, 0x00, (char *)data))
          return -1;
      }
      else { // GP Log directory
        if (!ataReadLogExt(device, 0x00, 0x00, 0, data, 1))
          return -1;
      }
    
      // swap endian order if needed
      if (isbigendian())
        swapx(&data->logversion);
    
      return 0;
    }
    
    
    // Reads the selective self-test log (log #9)
    int ataReadSelectiveSelfTestLog(ata_device * device, struct ata_selective_self_test_log *data){
      
      // get data from device
      if (smartcommandhandler(device, READ_LOG, 0x09, (char *)data)){
        syserror("Error SMART Read Selective Self-Test Log failed");
        return -1;
      }
       
      // compute its checksum, and issue a warning if needed
      if (checksum(data))
        checksumwarning("SMART Selective Self-Test Log Structure");
      
      // swap endian order if needed
      if (isbigendian()){
        int i;
        swap2((char *)&(data->logversion));
        for (i=0;i<5;i++){
          swap8((char *)&(data->span[i].start));
          swap8((char *)&(data->span[i].end));
        }
        swap8((char *)&(data->currentlba));
        swap2((char *)&(data->currentspan));
        swap2((char *)&(data->flags));
        swap2((char *)&(data->pendingtime));
      }
      
      if (data->logversion != 1)
        pout("Note: selective self-test log revision number (%d) not 1 implies that no selective self-test has ever been run\n", data->logversion);
      
      return 0;
    }
    
    // Writes the selective self-test log (log #9)
    int ataWriteSelectiveSelfTestLog(ata_device * device, ata_selective_selftest_args & args,
                                     const ata_smart_values * sv, uint64_t num_sectors)
    {
      // Disk size must be known
      if (!num_sectors) {
        pout("Disk size is unknown, unable to check selective self-test spans\n");
        return -1;
      }
    
      // Read log
      struct ata_selective_self_test_log sstlog, *data=&sstlog;
      unsigned char *ptr=(unsigned char *)data;
      if (ataReadSelectiveSelfTestLog(device, data)) {
        pout("Since Read failed, will not attempt to WRITE Selective Self-test Log\n");
        return -1;
      }
      
      // Set log version
      data->logversion = 1;
    
      // Host is NOT allowed to write selective self-test log if a selective
      // self-test is in progress.
      if (0<data->currentspan && data->currentspan<6 && ((sv->self_test_exec_status)>>4)==15) {
        pout("Error SMART Selective or other Self-Test in progress.\n");
        return -4;
      }
    
      // Set start/end values based on old spans for special -t select,... options
      int i;
      for (i = 0; i < args.num_spans; i++) {
        int mode = args.span[i].mode;
        uint64_t start = args.span[i].start;
        uint64_t end   = args.span[i].end;
        if (mode == SEL_CONT) {// redo or next dependig on last test status
          switch (sv->self_test_exec_status >> 4) {
            case 1: case 2: // Aborted/Interrupted by host
              pout("Continue Selective Self-Test: Redo last span\n");
              mode = SEL_REDO;
              break;
            default: // All others
              pout("Continue Selective Self-Test: Start next span\n");
              mode = SEL_NEXT;
              break;
          }
        }
        switch (mode) {
          case SEL_RANGE: // -t select,START-END
            break;
          case SEL_REDO: // -t select,redo... => Redo current
            start = data->span[i].start;
            if (end > 0) { // -t select,redo+SIZE
              end--; end += start; // [oldstart, oldstart+SIZE)
            }
            else // -t select,redo
              end = data->span[i].end; // [oldstart, oldend]
            break;
          case SEL_NEXT: // -t select,next... => Do next
            if (data->span[i].end == 0) {
              start = end = 0; break; // skip empty spans
            }
            start = data->span[i].end + 1;
            if (start >= num_sectors)
              start = 0; // wrap around
            if (end > 0) { // -t select,next+SIZE
              end--; end += start; // (oldend, oldend+SIZE]
            }
            else { // -t select,next
              uint64_t oldsize = data->span[i].end - data->span[i].start + 1;
              end = start + oldsize - 1; // (oldend, oldend+oldsize]
              if (end >= num_sectors) {
                // Adjust size to allow round-robin testing without future size decrease
                uint64_t spans = (num_sectors + oldsize-1) / oldsize;
                uint64_t newsize = (num_sectors + spans-1) / spans;
                uint64_t newstart = num_sectors - newsize, newend = num_sectors - 1;
                pout("Span %d changed from %"PRIu64"-%"PRIu64" (%"PRIu64" sectors)\n",
                     i, start, end, oldsize);
                pout("                 to %"PRIu64"-%"PRIu64" (%"PRIu64" sectors) (%"PRIu64" spans)\n",
                     newstart, newend, newsize, spans);
                start = newstart; end = newend;
              }
            }
            break;
          default:
            pout("ataWriteSelectiveSelfTestLog: Invalid mode %d\n", mode);
            return -1;
        }
        // Range check
        if (start < num_sectors && num_sectors <= end) {
          if (end != ~(uint64_t)0) // -t select,N-max
            pout("Size of self-test span %d decreased according to disk size\n", i);
          end = num_sectors - 1;
        }
        if (!(start <= end && end < num_sectors)) {
          pout("Invalid selective self-test span %d: %"PRIu64"-%"PRIu64" (%"PRIu64" sectors)\n",
            i, start, end, num_sectors);
          return -1;
        }
        // Return the actual mode and range to caller.
        args.span[i].mode  = mode;
        args.span[i].start = start;
        args.span[i].end   = end;
      }
    
      // Clear spans
      for (i=0; i<5; i++)
        memset(data->span+i, 0, sizeof(struct test_span));
      
      // Set spans for testing 
      for (i = 0; i < args.num_spans; i++){
        data->span[i].start = args.span[i].start;
        data->span[i].end   = args.span[i].end;
      }
    
      // host must initialize to zero before initiating selective self-test
      data->currentlba=0;
      data->currentspan=0;
      
      // Perform off-line scan after selective test?
      if (args.scan_after_select == 1)
        // NO
        data->flags &= ~SELECTIVE_FLAG_DOSCAN;
      else if (args.scan_after_select == 2)
        // YES
        data->flags |= SELECTIVE_FLAG_DOSCAN;
      
      // Must clear active and pending flags before writing
      data->flags &= ~(SELECTIVE_FLAG_ACTIVE);  
      data->flags &= ~(SELECTIVE_FLAG_PENDING);
    
      // modify pending time?
      if (args.pending_time)
        data->pendingtime = (unsigned short)(args.pending_time-1);
    
      // Set checksum to zero, then compute checksum
      data->checksum=0;
      unsigned char cksum=0;
      for (i=0; i<512; i++)
        cksum+=ptr[i];
      cksum=~cksum;
      cksum+=1;
      data->checksum=cksum;
    
      // swap endian order if needed
      if (isbigendian()){
        swap2((char *)&(data->logversion));
        for (int i=0;i<5;i++){
          swap8((char *)&(data->span[i].start));
          swap8((char *)&(data->span[i].end));
        }
        swap8((char *)&(data->currentlba));
        swap2((char *)&(data->currentspan));
        swap2((char *)&(data->flags));
        swap2((char *)&(data->pendingtime));
      }
    
      // write new selective self-test log
      if (smartcommandhandler(device, WRITE_LOG, 0x09, (char *)data)){
        syserror("Error Write Selective Self-Test Log failed");
        return -3;
      }
    
      return 0;
    }
    
    // This corrects some quantities that are byte reversed in the SMART
    // ATA ERROR LOG.
    static void fixsamsungerrorlog(ata_smart_errorlog * data)
    {
      // FIXED IN SAMSUNG -25 FIRMWARE???
      // Device error count in bytes 452-3
      swap2((char *)&(data->ata_error_count));
      
      // FIXED IN SAMSUNG -22a FIRMWARE
      // step through 5 error log data structures
      for (int i = 0; i < 5; i++){
        // step through 5 command data structures
        for (int j = 0; j < 5; j++)
          // Command data structure 4-byte millisec timestamp.  These are
          // bytes (N+8, N+9, N+10, N+11).
          swap4((char *)&(data->errorlog_struct[i].commands[j].timestamp));
        // Error data structure two-byte hour life timestamp.  These are
        // bytes (N+28, N+29).
        swap2((char *)&(data->errorlog_struct[i].error_struct.timestamp));
      }
      return;
    }
    
    // NEEDED ONLY FOR SAMSUNG -22 (some) -23 AND -24?? FIRMWARE
    static void fixsamsungerrorlog2(ata_smart_errorlog * data)
    {
      // Device error count in bytes 452-3
      swap2((char *)&(data->ata_error_count));
      return;
    }
    
    // Reads the Summary SMART Error Log (log #1). The Comprehensive SMART
    // Error Log is #2, and the Extended Comprehensive SMART Error log is
    // #3
    int ataReadErrorLog (ata_device * device, ata_smart_errorlog *data,
                         unsigned char fix_firmwarebug)
    {
      
      // get data from device
      if (smartcommandhandler(device, READ_LOG, 0x01, (char *)data)){
        syserror("Error SMART Error Log Read failed");
        return -1;
      }
      
      // compute its checksum, and issue a warning if needed
      if (checksum(data))
        checksumwarning("SMART ATA Error Log Structure");
      
      // Some disks have the byte order reversed in some SMART Summary
      // Error log entries
      if (fix_firmwarebug == FIX_SAMSUNG)
        fixsamsungerrorlog(data);
      else if (fix_firmwarebug == FIX_SAMSUNG2)
        fixsamsungerrorlog2(data);
    
      // swap endian order if needed
      if (isbigendian()){
        int i,j;
        
        // Device error count in bytes 452-3
        swap2((char *)&(data->ata_error_count));
        
        // step through 5 error log data structures
        for (i=0; i<5; i++){
          // step through 5 command data structures
          for (j=0; j<5; j++)
            // Command data structure 4-byte millisec timestamp
            swap4((char *)&(data->errorlog_struct[i].commands[j].timestamp));
          // Error data structure life timestamp
          swap2((char *)&(data->errorlog_struct[i].error_struct.timestamp));
        }
      }
      
      return 0;
    }
    
    // Read Extended Comprehensive Error Log
    bool ataReadExtErrorLog(ata_device * device, ata_smart_exterrlog * log,
                            unsigned nsectors)
    {
      if (!ataReadLogExt(device, 0x03, 0x00, 0, log, nsectors))
        return false;
    
      check_multi_sector_sum(log, nsectors, "SMART Extended Comprehensive Error Log Structure");
    
      if (isbigendian()) {
        swapx(&log->device_error_count);
        swapx(&log->error_log_index);
    
        for (unsigned i = 0; i < nsectors; i++) {
          for (unsigned j = 0; j < 4; j++)
            swapx(&log->error_logs[i].commands[j].timestamp);
          swapx(&log->error_logs[i].error.timestamp);
        }
      }
    
      return true;
    }
    
    
    int ataReadSmartThresholds (ata_device * device, struct ata_smart_thresholds_pvt *data){
      
      // get data from device
      if (smartcommandhandler(device, READ_THRESHOLDS, 0, (char *)data)){
        syserror("Error SMART Thresholds Read failed");
        return -1;
      }
      
      // compute its checksum, and issue a warning if needed
      if (checksum(data))
        checksumwarning("SMART Attribute Thresholds Structure");
      
      // swap endian order if needed
      if (isbigendian())
        swap2((char *)&(data->revnumber));
    
      return 0;
    }
    
    int ataEnableSmart (ata_device * device ){
      if (smartcommandhandler(device, ENABLE, 0, NULL)){
        syserror("Error SMART Enable failed");
        return -1;
      }
      return 0;
    }
    
    int ataDisableSmart (ata_device * device ){
      
      if (smartcommandhandler(device, DISABLE, 0, NULL)){
        syserror("Error SMART Disable failed");
        return -1;
      }  
      return 0;
    }
    
    int ataEnableAutoSave(ata_device * device){
      if (smartcommandhandler(device, AUTOSAVE, 241, NULL)){
        syserror("Error SMART Enable Auto-save failed");
        return -1;
      }
      return 0;
    }
    
    int ataDisableAutoSave(ata_device * device){
      
      if (smartcommandhandler(device, AUTOSAVE, 0, NULL)){
        syserror("Error SMART Disable Auto-save failed");
        return -1;
      }
      return 0;
    }
    
    // In *ALL* ATA standards the Enable/Disable AutoOffline command is
    // marked "OBSOLETE". It is defined in SFF-8035i Revision 2, and most
    // vendors still support it for backwards compatibility. IBM documents
    // it for some drives.
    int ataEnableAutoOffline (ata_device * device){
      
      /* timer hard coded to 4 hours */  
      if (smartcommandhandler(device, AUTO_OFFLINE, 248, NULL)){
        syserror("Error SMART Enable Automatic Offline failed");
        return -1;
      }
      return 0;
    }
    
    // Another Obsolete Command.  See comments directly above, associated
    // with the corresponding Enable command.
    int ataDisableAutoOffline (ata_device * device){
      
      if (smartcommandhandler(device, AUTO_OFFLINE, 0, NULL)){
        syserror("Error SMART Disable Automatic Offline failed");
        return -1;
      }
      return 0;
    }
    
    // If SMART is enabled, supported, and working, then this call is
    // guaranteed to return 1, else zero.  Note that it should return 1
    // regardless of whether the disk's SMART status is 'healthy' or
    // 'failing'.
    int ataDoesSmartWork(ata_device * device){
      int retval=smartcommandhandler(device, STATUS, 0, NULL);
    
      if (-1 == retval)
        return 0;
    
      return 1;
    }
    
    // This function uses a different interface (DRIVE_TASK) than the
    // other commands in this file.
    int ataSmartStatus2(ata_device * device){
      return smartcommandhandler(device, STATUS_CHECK, 0, NULL);  
    }
    
    // This is the way to execute ALL tests: offline, short self-test,
    // extended self test, with and without captive mode, etc.
    // TODO: Move to ataprint.cpp ?
    int ataSmartTest(ata_device * device, int testtype, const ata_selective_selftest_args & selargs,
                     const ata_smart_values * sv, uint64_t num_sectors)
    {
      char cmdmsg[128]; const char *type, *captive;
      int errornum, cap, retval, select=0;
    
      // Boolean, if set, says test is captive
      cap=testtype & CAPTIVE_MASK;
    
      // Set up strings that describe the type of test
      if (cap)
        captive="captive";
      else
        captive="off-line";
      
      if (testtype==OFFLINE_FULL_SCAN)
        type="off-line";
      else  if (testtype==SHORT_SELF_TEST || testtype==SHORT_CAPTIVE_SELF_TEST)
        type="Short self-test";
      else if (testtype==EXTEND_SELF_TEST || testtype==EXTEND_CAPTIVE_SELF_TEST)
        type="Extended self-test";
      else if (testtype==CONVEYANCE_SELF_TEST || testtype==CONVEYANCE_CAPTIVE_SELF_TEST)
        type="Conveyance self-test";
      else if ((select=(testtype==SELECTIVE_SELF_TEST || testtype==SELECTIVE_CAPTIVE_SELF_TEST)))
        type="Selective self-test";
      else
        type="[Unrecognized] self-test";
      
      // If doing a selective self-test, first use WRITE_LOG to write the
      // selective self-test log.
      ata_selective_selftest_args selargs_io = selargs; // filled with info about actual spans
      if (select && (retval = ataWriteSelectiveSelfTestLog(device, selargs_io, sv, num_sectors))) {
        if (retval==-4)
          pout("Can't start selective self-test without aborting current test: use '-X' option to smartctl.\n");
        return retval;
      }
    
      //  Print ouf message that we are sending the command to test
      if (testtype==ABORT_SELF_TEST)
        sprintf(cmdmsg,"Abort SMART off-line mode self-test routine");
      else
        sprintf(cmdmsg,"Execute SMART %s routine immediately in %s mode",type,captive);
      pout("Sending command: \"%s\".\n",cmdmsg);
    
      if (select) {
        int i;
        pout("SPAN         STARTING_LBA           ENDING_LBA\n");
        for (i = 0; i < selargs_io.num_spans; i++)
          pout("   %d %20"PRId64" %20"PRId64"\n", i,
               selargs_io.span[i].start,
               selargs_io.span[i].end);
      }
      
      // Now send the command to test
      errornum=smartcommandhandler(device, IMMEDIATE_OFFLINE, testtype, NULL);
      
      if (errornum && !(cap && errno==EIO)){
        char errormsg[128];
        sprintf(errormsg,"Command \"%s\" failed",cmdmsg); 
        syserror(errormsg);
        pout("\n");
        return -1;
      }
      
      // Since the command succeeded, tell user
      if (testtype==ABORT_SELF_TEST)
        pout("Self-testing aborted!\n");
      else
        pout("Drive command \"%s\" successful.\nTesting has begun.\n",cmdmsg);
      return 0;
    }
    
    /* Test Time Functions */
    int TestTime(const ata_smart_values *data, int testtype)
    {
      switch (testtype){
      case OFFLINE_FULL_SCAN:
        return (int) data->total_time_to_complete_off_line;
      case SHORT_SELF_TEST:
      case SHORT_CAPTIVE_SELF_TEST:
        return (int) data->short_test_completion_time;
      case EXTEND_SELF_TEST:
      case EXTEND_CAPTIVE_SELF_TEST:
        return (int) data->extend_test_completion_time;
      case CONVEYANCE_SELF_TEST:
      case CONVEYANCE_CAPTIVE_SELF_TEST:
        return (int) data->conveyance_test_completion_time;
      default:
        return 0;
      }
    }
    
    // This function tells you both about the ATA error log and the
    // self-test error log capability (introduced in ATA-5).  The bit is
    // poorly documented in the ATA/ATAPI standard.  Starting with ATA-6,
    // SMART error logging is also indicated in bit 0 of DEVICE IDENTIFY
    // word 84 and 87.  Top two bits must match the pattern 01. BEFORE
    // ATA-6 these top two bits still had to match the pattern 01, but the
    // remaining bits were reserved (==0).
    int isSmartErrorLogCapable (const ata_smart_values * data, const ata_identify_device * identity)
    {
      unsigned short word84=identity->command_set_extension;
      unsigned short word87=identity->csf_default;
      int isata6=identity->major_rev_num & (0x01<<6);
      int isata7=identity->major_rev_num & (0x01<<7);
    
      if ((isata6 || isata7) && (word84>>14) == 0x01 && (word84 & 0x01))
        return 1;
      
      if ((isata6 || isata7) && (word87>>14) == 0x01 && (word87 & 0x01))
        return 1;
      
      // otherwise we'll use the poorly documented capability bit
      return data->errorlog_capability & 0x01;
    }
    
    // See previous function.  If the error log exists then the self-test
    // log should (must?) also exist.
    int isSmartTestLogCapable (const ata_smart_values * data, const ata_identify_device *identity)
    {
      unsigned short word84=identity->command_set_extension;
      unsigned short word87=identity->csf_default;
      int isata6=identity->major_rev_num & (0x01<<6);
      int isata7=identity->major_rev_num & (0x01<<7);
    
      if ((isata6 || isata7) && (word84>>14) == 0x01 && (word84 & 0x02))
        return 1;
      
      if ((isata6 || isata7) && (word87>>14) == 0x01 && (word87 & 0x02))
        return 1;
    
    
      // otherwise we'll use the poorly documented capability bit
      return data->errorlog_capability & 0x01;
    }
    
    
    int isGeneralPurposeLoggingCapable(const ata_identify_device *identity)
    {
      unsigned short word84=identity->command_set_extension;
      unsigned short word87=identity->csf_default;
    
      // If bit 14 of word 84 is set to one and bit 15 of word 84 is
      // cleared to zero, the contents of word 84 contains valid support
      // information. If not, support information is not valid in this
      // word.
      if ((word84>>14) == 0x01)
        // If bit 5 of word 84 is set to one, the device supports the
        // General Purpose Logging feature set.
        return (word84 & (0x01 << 5));
      
      // If bit 14 of word 87 is set to one and bit 15 of word 87 is
      // cleared to zero, the contents of words (87:85) contain valid
      // information. If not, information is not valid in these words.  
      if ((word87>>14) == 0x01)
        // If bit 5 of word 87 is set to one, the device supports
        // the General Purpose Logging feature set.
        return (word87 & (0x01 << 5));
    
      // not capable
      return 0;
    }
    
    
    // SMART self-test capability is also indicated in bit 1 of DEVICE
    // IDENTIFY word 87 (if top two bits of word 87 match pattern 01).
    // However this was only introduced in ATA-6 (but self-test log was in
    // ATA-5).
    int isSupportExecuteOfflineImmediate(const ata_smart_values *data)
    {
      return data->offline_data_collection_capability & 0x01;
    }
    
    // Note in the ATA-5 standard, the following bit is listed as "Vendor
    // Specific".  So it may not be reliable. The only use of this that I
    // have found is in IBM drives, where it is well-documented.  See for
    // example page 170, section 13.32.1.18 of the IBM Travelstar 40GNX
    // hard disk drive specifications page 164 Revision 1.1 22 Apr 2002.
    int isSupportAutomaticTimer(const ata_smart_values * data)
    {
      return data->offline_data_collection_capability & 0x02;
    }
    int isSupportOfflineAbort(const ata_smart_values *data)
    {
      return data->offline_data_collection_capability & 0x04;
    }
    int isSupportOfflineSurfaceScan(const ata_smart_values * data)
    {
       return data->offline_data_collection_capability & 0x08;
    }
    int isSupportSelfTest (const ata_smart_values * data)
    {
       return data->offline_data_collection_capability & 0x10;
    }
    int isSupportConveyanceSelfTest(const ata_smart_values * data)
    {
       return data->offline_data_collection_capability & 0x20;
    }
    int isSupportSelectiveSelfTest(const ata_smart_values * data)
    {
       return data->offline_data_collection_capability & 0x40;
    }
    
    // Get attribute state
    ata_attr_state ata_get_attr_state(const ata_smart_attribute & attr,
                                      const ata_smart_threshold_entry & thre,
                                      const ata_vendor_attr_defs & defs)
    {
      if (!attr.id)
        return ATTRSTATE_NON_EXISTING;
    
      // Normalized values (current,worst,threshold) not valid
      // if specified by '-v' option.
      // (Some SSD disks uses these bytes to store raw value).
      if (defs[attr.id].flags & ATTRFLAG_NO_NORMVAL)
        return ATTRSTATE_NO_NORMVAL;
    
      // No threshold if thresholds cannot be read.
      if (!thre.id && !thre.threshold)
        return ATTRSTATE_NO_THRESHOLD;
    
      // Bad threshold if id's don't match
      if (attr.id != thre.id)
        return ATTRSTATE_BAD_THRESHOLD;
    
      // Don't report a failed attribute if its threshold is 0.
      // ATA-3 (X3T13/2008D Revision 7b) declares 0x00 as the "always passing"
      // threshold (Later ATA versions declare all thresholds as "obsolete").
      // In practice, threshold value 0 is often used for usage attributes.
      if (!thre.threshold)
        return ATTRSTATE_OK;
    
      // Failed now if current value is below threshold
      if (attr.current <= thre.threshold)
        return ATTRSTATE_FAILED_NOW;
    
      // Failed in the passed if worst value is below threshold
      if (attr.worst <= thre.threshold)
        return ATTRSTATE_FAILED_PAST;
    
      return ATTRSTATE_OK;
    }
    
    // Get default raw value print format
    static ata_attr_raw_format get_default_raw_format(unsigned char id)
    {
      switch (id) {
      case 3:   // Spin-up time
        return RAWFMT_RAW16_OPT_AVG16;
    
      case 5:   // Reallocated sector count
      case 196: // Reallocated event count
        return RAWFMT_RAW16_OPT_RAW16;
    
      case 190: // Temperature
      case 194:
        return RAWFMT_TEMPMINMAX;
    
      default:
        return RAWFMT_RAW48;
      }
    }
    
    // Get attribute raw value.
    uint64_t ata_get_attr_raw_value(const ata_smart_attribute & attr,
                                    const ata_vendor_attr_defs & defs)
    {
      // Get 48 bit raw value
      const unsigned char * raw = attr.raw;
      uint64_t rawvalue;
      rawvalue =              raw[0]
                 | (          raw[1] <<  8)
                 | (          raw[2] << 16)
                 | ((uint64_t)raw[3] << 24)
                 | ((uint64_t)raw[4] << 32)
                 | ((uint64_t)raw[5] << 40);
    
      if (defs[attr.id].flags & ATTRFLAG_NO_NORMVAL) {
        // Some SSD vendors use bytes 3-10 from the Attribute
        // Data Structure to store a 64-bit raw value.
        rawvalue <<= 8;
        rawvalue |= attr.worst;
        rawvalue <<= 8;
        rawvalue |= attr.current;
      }
      return rawvalue;
    }
    
    
    // Format attribute raw value.
    std::string ata_format_attr_raw_value(const ata_smart_attribute & attr,
                                          const ata_vendor_attr_defs & defs)
    {
      // Get 48 bit or64 bit raw value
      uint64_t rawvalue = ata_get_attr_raw_value(attr, defs);
    
      // Get 16 bit words
      const unsigned char * raw = attr.raw;
      unsigned word[3];
      word[0] = raw[0] | (raw[1] << 8);
      word[1] = raw[2] | (raw[3] << 8);
      word[2] = raw[4] | (raw[5] << 8);
    
      // Get print format
      ata_attr_raw_format format = defs[attr.id].raw_format;
      if (format == RAWFMT_DEFAULT)
        format = get_default_raw_format(attr.id);
    
      // Print
      std::string s;
      switch (format) {
      case RAWFMT_RAW8:
        s = strprintf("%d %d %d %d %d %d",
          raw[5], raw[4], raw[3], raw[2], raw[1], raw[0]);
        break;
    
      case RAWFMT_RAW16:
        s = strprintf("%u %u %u", word[2], word[1], word[0]);
        break;
    
      case RAWFMT_RAW48:
        s = strprintf("%"PRIu64, rawvalue);
        break;
    
      case RAWFMT_HEX48:
        s = strprintf("0x%012"PRIx64, rawvalue);
        break;
    
      case RAWFMT_RAW64:
        s = strprintf("%"PRIu64, rawvalue);
        break;
    
      case RAWFMT_HEX64:
        s = strprintf("0x%016"PRIx64, rawvalue);
        break;
    
      case RAWFMT_RAW16_OPT_RAW16:
        s = strprintf("%u", word[0]);
        if (word[1] || word[2])
          s += strprintf(" (%u, %u)", word[2], word[1]);
        break;
    
      case RAWFMT_RAW16_OPT_AVG16:
        s = strprintf("%u", word[0]);
        if (word[1])
          s += strprintf(" (Average %u)", word[1]);
        break;
    
      case RAWFMT_RAW24_RAW24:
        s = strprintf("%d/%d",
          raw[0] | (raw[1]<<8) | (raw[2]<<16),
          raw[3] | (raw[4]<<8) | (raw[5]<<16));
        break;
    
      case RAWFMT_MIN2HOUR:
        {
          // minutes
          int64_t temp = word[0]+(word[1]<<16);
          int64_t tmp1 = temp/60;
          int64_t tmp2 = temp%60;
          s = strprintf("%"PRIu64"h+%02"PRIu64"m", tmp1, tmp2);
          if (word[2])
            s += strprintf(" (%u)", word[2]);
        }
        break;
    
      case RAWFMT_SEC2HOUR:
        {
          // seconds
          int64_t hours = rawvalue/3600;
          int64_t minutes = (rawvalue-3600*hours)/60;
          int64_t seconds = rawvalue%60;
          s = strprintf("%"PRIu64"h+%02"PRIu64"m+%02"PRIu64"s", hours, minutes, seconds);
        }
        break;
    
      case RAWFMT_HALFMIN2HOUR:
        {
          // 30-second counter
          int64_t hours = rawvalue/120;
          int64_t minutes = (rawvalue-120*hours)/2;
          s += strprintf("%"PRIu64"h+%02"PRIu64"m", hours, minutes);
        }
        break;
    
      case RAWFMT_TEMPMINMAX:
        // Temperature
        s = strprintf("%u", word[0]);
        if (word[1] || word[2]) {
          unsigned lo = ~0, hi = ~0;
          if (!raw[3]) {
            // 00 HH 00 LL 00 TT (IBM)
            hi = word[2]; lo = word[1];
          }
          else if (!word[2]) {
            // 00 00 HH LL 00 TT (Maxtor)
            hi = raw[3]; lo = raw[2];
          }
          if (lo > hi) {
            unsigned t = lo; lo = hi; hi = t;
          }
          if (lo <= word[0] && word[0] <= hi)
            s += strprintf(" (Lifetime Min/Max %u/%u)", lo, hi);
          else
            s += strprintf(" (%d %d %d %d)", raw[5], raw[4], raw[3], raw[2]);
        }
        break;
    
      case RAWFMT_TEMP10X:
        // ten times temperature in Celsius
        s = strprintf("%d.%d", word[0]/10, word[0]%10);
        break;
    
      default:
        s = "?"; // Should not happen
        break;
      }
    
      return s;
    }
    
    // Attribute names shouldn't be longer than 23 chars, otherwise they break the
    // output of smartctl.
    static const char * get_default_attr_name(unsigned char id)
    {
      switch (id) {
      case 1:
        return "Raw_Read_Error_Rate";
      case 2:
        return "Throughput_Performance";
      case 3:
        return "Spin_Up_Time";
      case 4:
        return "Start_Stop_Count";
      case 5:
        return "Reallocated_Sector_Ct";
      case 6:
        return "Read_Channel_Margin";
      case 7:
        return "Seek_Error_Rate";
      case 8:
        return "Seek_Time_Performance";
      case 9:
        return "Power_On_Hours";
      case 10:
        return "Spin_Retry_Count";
      case 11:
        return "Calibration_Retry_Count";
      case 12:
        return "Power_Cycle_Count";
      case 13:
        return "Read_Soft_Error_Rate";
      case 175:
        return "Program_Fail_Count_Chip";
      case 176:
        return "Erase_Fail_Count_Chip";
      case 177:
        return "Wear_Leveling_Count";
      case 178:
        return "Used_Rsvd_Blk_Cnt_Chip";
      case 179:
        return "Used_Rsvd_Blk_Cnt_Tot";
      case 180:
        return "Unused_Rsvd_Blk_Cnt_Tot";
      case 181:
        return "Program_Fail_Cnt_Total";
      case 182:
        return "Erase_Fail_Count_Total";
      case 183:
        return "Runtime_Bad_Block";
      case 184:
        return "End-to-End_Error";
      case 187:
        return "Reported_Uncorrect";
      case 188:
        return "Command_Timeout";
      case 189:
        return "High_Fly_Writes";
      case 190:
        // Western Digital uses this for temperature.
        // It's identical to Attribute 194 except that it
        // has a failure threshold set to correspond to the
        // max allowed operating temperature of the drive, which 
        // is typically 55C.  So if this attribute has failed
        // in the past, it indicates that the drive temp exceeded
        // 55C sometime in the past.
        return "Airflow_Temperature_Cel";
      case 191:
        return "G-Sense_Error_Rate";
      case 192:
        return "Power-Off_Retract_Count";
      case 193:
        return "Load_Cycle_Count";
      case 194:
        return "Temperature_Celsius";
      case 195:
        // Fujitsu: "ECC_On_The_Fly_Count";
        return "Hardware_ECC_Recovered";
      case 196:
        return "Reallocated_Event_Count";
      case 197:
        return "Current_Pending_Sector";
      case 198:
        return "Offline_Uncorrectable";
      case 199:
        return "UDMA_CRC_Error_Count";
      case 200:
        // Western Digital
        return "Multi_Zone_Error_Rate";
      case 201:
        return "Soft_Read_Error_Rate";
      case 202:
        // Fujitsu: "TA_Increase_Count"
        return "Data_Address_Mark_Errs";
      case 203:
        // Fujitsu
        return "Run_Out_Cancel";
        // Maxtor: ECC Errors
      case 204:
        // Fujitsu: "Shock_Count_Write_Opern"
        return "Soft_ECC_Correction";
      case 205:
        // Fujitsu: "Shock_Rate_Write_Opern"
        return "Thermal_Asperity_Rate";
      case 206:
        // Fujitsu
        return "Flying_Height";
      case 207:
        // Maxtor
        return "Spin_High_Current";
      case 208:
        // Maxtor
        return "Spin_Buzz";
      case 209:
        // Maxtor
        return "Offline_Seek_Performnce";
      case 220:
        return "Disk_Shift";
      case 221:
        return "G-Sense_Error_Rate";
      case 222:
        return "Loaded_Hours";
      case 223:
        return "Load_Retry_Count";
      case 224:
        return "Load_Friction";
      case 225:
        return "Load_Cycle_Count";
      case 226:
        return "Load-in_Time";
      case 227:
        return "Torq-amp_Count";
      case 228:
        return "Power-off_Retract_Count";
      case 230:
        // seen in IBM DTPA-353750
        return "Head_Amplitude";
      case 231:
        return "Temperature_Celsius";
      case 232:
        // seen in Intel X25-E SSD
        return "Available_Reservd_Space";
      case 233:
        // seen in Intel X25-E SSD
        return "Media_Wearout_Indicator";
      case 240:
        return "Head_Flying_Hours";
      case 241:
        return "Total_LBAs_Written";
      case 242:
        return "Total_LBAs_Read";
      case 250:
        return "Read_Error_Retry_Rate";
      case 254:
        return "Free_Fall_Sensor";
      default:
        return "Unknown_Attribute";
      }
    }
    
    // Get attribute name
    std::string ata_get_smart_attr_name(unsigned char id, const ata_vendor_attr_defs & defs)
    {
      if (!defs[id].name.empty())
        return defs[id].name;
      else
        return get_default_attr_name(id);
    }
    
    // Find attribute index for attribute id, -1 if not found.
    int ata_find_attr_index(unsigned char id, const ata_smart_values & smartval)
    {
      if (!id)
        return -1;
      for (int i = 0; i < NUMBER_ATA_SMART_ATTRIBUTES; i++) {
        if (smartval.vendor_attributes[i].id == id)
          return i;
      }
      return -1;
    }
    
    // Return Temperature Attribute raw value selected according to possible
    // non-default interpretations. If the Attribute does not exist, return 0
    unsigned char ata_return_temperature_value(const ata_smart_values * data, const ata_vendor_attr_defs & defs)
    {
      for (int i = 0; i < 3; i++) {
        static const unsigned char ids[3] = {194, 9, 220};
        unsigned char id = ids[i];
        const ata_attr_raw_format format = defs[id].raw_format;
        if (!(   (id == 194 && format == RAWFMT_DEFAULT)
              || format == RAWFMT_TEMPMINMAX || format == RAWFMT_TEMP10X))
          continue;
        int idx = ata_find_attr_index(id, *data);
        if (idx < 0)
          continue;
        uint64_t raw = ata_get_attr_raw_value(data->vendor_attributes[idx], defs);
        unsigned temp = (unsigned short)raw; // ignore possible min/max values in high words
        if (format == RAWFMT_TEMP10X) // -v N,temp10x
          temp = (temp+5) / 10;
        if (!(0 < temp && temp <= 255))
          continue;
        return temp;
      }
      // No valid attribute found
      return 0;
    }
    
    
    // Read SCT Status
    int ataReadSCTStatus(ata_device * device, ata_sct_status_response * sts)
    {
      // read SCT status via SMART log 0xe0
      memset(sts, 0, sizeof(*sts));
      if (smartcommandhandler(device, READ_LOG, 0xe0, (char *)sts)){
        syserror("Error Read SCT Status failed");
        return -1;
      }
    
      // swap endian order if needed
      if (isbigendian()){
        swapx(&sts->format_version);
        swapx(&sts->sct_version);
        swapx(&sts->sct_spec);
        swapx(&sts->ext_status_code);
        swapx(&sts->action_code);
        swapx(&sts->function_code);
        swapx(&sts->over_limit_count);
        swapx(&sts->under_limit_count);
      }
    
      // Check format version
      if (!(sts->format_version == 2 || sts->format_version == 3)) {
        pout("Error unknown SCT Status format version %u, should be 2 or 3.\n", sts->format_version);
        return -1;
      }
      return 0;
    }
    
    // Read SCT Temperature History Table and Status
    int ataReadSCTTempHist(ata_device * device, ata_sct_temperature_history_table * tmh,
                           ata_sct_status_response * sts)
    {
      // Check initial status
      if (ataReadSCTStatus(device, sts))
        return -1;
    
      // Do nothing if other SCT command is executing
      if (sts->ext_status_code == 0xffff) {
        pout("Another SCT command is executing, abort Read Data Table\n"
             "(SCT ext_status_code 0x%04x, action_code=%u, function_code=%u)\n",
          sts->ext_status_code, sts->action_code, sts->function_code);
        return -1;
      }
    
      ata_sct_data_table_command cmd; memset(&cmd, 0, sizeof(cmd));
      // CAUTION: DO NOT CHANGE THIS VALUE (SOME ACTION CODES MAY ERASE DISK)
      cmd.action_code   = 5; // Data table command
      cmd.function_code = 1; // Read table
      cmd.table_id      = 2; // Temperature History Table
    
      // write command via SMART log page 0xe0
      if (smartcommandhandler(device, WRITE_LOG, 0xe0, (char *)&cmd)){
        syserror("Error Write SCT Data Table command failed");
        return -1;
      }
    
      // read SCT data via SMART log page 0xe1
      memset(tmh, 0, sizeof(*tmh));
      if (smartcommandhandler(device, READ_LOG, 0xe1, (char *)tmh)){
        syserror("Error Read SCT Data Table failed");
        return -1;
      }
    
      // re-read and check SCT status
      if (ataReadSCTStatus(device, sts))
        return -1;
    
      if (!(sts->ext_status_code == 0 && sts->action_code == 5 && sts->function_code == 1)) {
        pout("Error unexcepted SCT status 0x%04x (action_code=%u, function_code=%u)\n",
          sts->ext_status_code, sts->action_code, sts->function_code);
        return -1;
      }
    
      // swap endian order if needed
      if (isbigendian()){
        swapx(&tmh->format_version);
        swapx(&tmh->sampling_period);
        swapx(&tmh->interval);
      }
    
      // Check format version
      if (tmh->format_version != 2) {
        pout("Error unknown SCT Temperature History Format Version (%u), should be 2.\n", tmh->format_version);
        return -1;
      }
      return 0;
    }
    
    // Set SCT Temperature Logging Interval
    int ataSetSCTTempInterval(ata_device * device, unsigned interval, bool persistent)
    {
      // Check initial status
      ata_sct_status_response sts;
      if (ataReadSCTStatus(device, &sts))
        return -1;
    
      // Do nothing if other SCT command is executing
      if (sts.ext_status_code == 0xffff) {
        pout("Another SCT command is executing, abort Feature Control\n"
             "(SCT ext_status_code 0x%04x, action_code=%u, function_code=%u)\n",
          sts.ext_status_code, sts.action_code, sts.function_code);
        return -1;
      }
    
      ata_sct_feature_control_command cmd; memset(&cmd, 0, sizeof(cmd));
      // CAUTION: DO NOT CHANGE THIS VALUE (SOME ACTION CODES MAY ERASE DISK)
      cmd.action_code   = 4; // Feature Control command
      cmd.function_code = 1; // Set state
      cmd.feature_code  = 3; // Temperature logging interval
      cmd.state         = interval;
      cmd.option_flags  = (persistent ? 0x01 : 0x00);
    
      // write command via SMART log page 0xe0
      if (smartcommandhandler(device, WRITE_LOG, 0xe0, (char *)&cmd)){
        syserror("Error Write SCT Feature Control Command failed");
        return -1;
      }
    
      // re-read and check SCT status
      if (ataReadSCTStatus(device, &sts))
        return -1;
    
      if (!(sts.ext_status_code == 0 && sts.action_code == 4 && sts.function_code == 1)) {
        pout("Error unexcepted SCT status 0x%04x (action_code=%u, function_code=%u)\n",
          sts.ext_status_code, sts.action_code, sts.function_code);
        return -1;
      }
      return 0;
    }
    
    // Print one self-test log entry.
    // Returns true if self-test showed an error.
    bool ataPrintSmartSelfTestEntry(unsigned testnum, unsigned char test_type,
                                    unsigned char test_status,
                                    unsigned short timestamp,
                                    uint64_t failing_lba,
                                    bool print_error_only, bool & print_header)
    {
      const char * msgtest;
      switch (test_type) {
        case 0x00: msgtest = "Offline";            break;
        case 0x01: msgtest = "Short offline";      break;
        case 0x02: msgtest = "Extended offline";   break;
        case 0x03: msgtest = "Conveyance offline"; break;
        case 0x04: msgtest = "Selective offline";  break;
        case 0x7f: msgtest = "Abort offline test"; break;
        case 0x81: msgtest = "Short captive";      break;
        case 0x82: msgtest = "Extended captive";   break;
        case 0x83: msgtest = "Conveyance captive"; break;
        case 0x84: msgtest = "Selective captive";  break;
        default:
          if ((0x40 <= test_type && test_type <= 0x7e) || 0x90 <= test_type)
            msgtest = "Vendor offline";
          else
            msgtest = "Reserved offline";
      }
    
      bool is_error = false;
      const char * msgstat;
      switch (test_status >> 4) {
        case 0x0: msgstat = "Completed without error";       break;
        case 0x1: msgstat = "Aborted by host";               break;
        case 0x2: msgstat = "Interrupted (host reset)";      break;
        case 0x3: msgstat = "Fatal or unknown error";        is_error = true; break;
        case 0x4: msgstat = "Completed: unknown failure";    is_error = true; break;
        case 0x5: msgstat = "Completed: electrical failure"; is_error = true; break;
        case 0x6: msgstat = "Completed: servo/seek failure"; is_error = true; break;
        case 0x7: msgstat = "Completed: read failure";       is_error = true; break;
        case 0x8: msgstat = "Completed: handling damage??";  is_error = true; break;
        case 0xf: msgstat = "Self-test routine in progress"; break;
        default:  msgstat = "Unknown/reserved test status";
      }
    
      if (!is_error && print_error_only)
        return false;
    
      // Print header once
      if (print_header) {
        print_header = false;
        pout("Num  Test_Description    Status                  Remaining  LifeTime(hours)  LBA_of_first_error\n");
      }
    
      char msglba[32];
      if (is_error && failing_lba < 0xffffffffffffULL)
        snprintf(msglba, sizeof(msglba), "%"PRIu64, failing_lba);
      else
        strcpy(msglba, "-");
    
      pout("#%2u  %-19s %-29s %1d0%%  %8u         %s\n", testnum, msgtest, msgstat,
           test_status & 0x0f, timestamp, msglba);
    
      return is_error;
    }
    
    // Print Smart self-test log, used by smartctl and smartd.
    // return value is:
    // bottom 8 bits: number of entries found where self-test showed an error
    // remaining bits: if nonzero, power on hours of last self-test where error was found
    int ataPrintSmartSelfTestlog(const ata_smart_selftestlog * data, bool allentries,
                                 unsigned char fix_firmwarebug)
    {
      if (allentries)
        pout("SMART Self-test log structure revision number %d\n",(int)data->revnumber);
      if ((data->revnumber!=0x0001) && allentries && fix_firmwarebug != FIX_SAMSUNG)
        pout("Warning: ATA Specification requires self-test log structure revision number = 1\n");
      if (data->mostrecenttest==0){
        if (allentries)
          pout("No self-tests have been logged.  [To run self-tests, use: smartctl -t]\n\n");
        return 0;
      }
    
      bool noheaderprinted = true;
      int retval=0, hours=0, testno=0;
    
      // print log
      for (int i = 20; i >= 0; i--) {
        // log is a circular buffer
        int j = (i+data->mostrecenttest)%21;
        const ata_smart_selftestlog_struct * log = data->selftest_struct+j;
    
        if (nonempty(log, sizeof(*log))) {
          // count entry based on non-empty structures -- needed for
          // Seagate only -- other vendors don't have blank entries 'in
          // the middle'
          testno++;
    
          // T13/1321D revision 1c: (Data structure Rev #1)
    
          //The failing LBA shall be the LBA of the uncorrectable sector
          //that caused the test to fail. If the device encountered more
          //than one uncorrectable sector during the test, this field
          //shall indicate the LBA of the first uncorrectable sector
          //encountered. If the test passed or the test failed for some
          //reason other than an uncorrectable sector, the value of this
          //field is undefined.
    
          // This is true in ALL ATA-5 specs
          uint64_t lba48 = (log->lbafirstfailure < 0xffffffff ? log->lbafirstfailure : 0xffffffffffffULL);
    
          // Print entry
          bool errorfound = ataPrintSmartSelfTestEntry(testno,
            log->selftestnumber, log->selfteststatus, log->timestamp,
            lba48, !allentries, noheaderprinted);
    
          // keep track of time of most recent error
          if (errorfound && !hours)
            hours=log->timestamp;
        }
      }
      if (!allentries && retval)
        pout("\n");
    
      hours = hours << 8;
      return (retval | hours);
    }
    
    
    /////////////////////////////////////////////////////////////////////////////
    // Pseudo-device to parse "smartctl -r ataioctl,2 ..." output and simulate
    // an ATA device with same behaviour
    
    namespace {
    
    class parsed_ata_device
    : public /*implements*/ ata_device_with_command_set
    {
    public:
      parsed_ata_device(smart_interface * intf, const char * dev_name);
    
      virtual ~parsed_ata_device() throw();
    
      virtual bool is_open() const;
    
      virtual bool open();
    
      virtual bool close();
    
      virtual bool ata_identify_is_cached() const;
    
    protected:
      virtual int ata_command_interface(smart_command_set command, int select, char * data);
    
    private:
      // Table of parsed commands, return value, data
      struct parsed_ata_command
      {
        smart_command_set command;
        int select;
        int retval, errval;
        char * data;
      };
    
      enum { max_num_commands = 32 };
      parsed_ata_command m_command_table[max_num_commands];
    
      int m_num_commands;
      int m_next_replay_command;
      bool m_replay_out_of_sync;
      bool m_ata_identify_is_cached;
    };
    
    static const char * nextline(const char * s, int & lineno)
    {
      for (s += strcspn(s, "\r\n"); *s == '\r' || *s == '\n'; s++) {
        if (*s == '\r' && s[1] == '\n')
          s++;
        lineno++;
      }
      return s;
    }
    
    static int name2command(const char * s)
    {
      for (int i = 0; i < (int)(sizeof(commandstrings)/sizeof(commandstrings[0])); i++) {
        if (!strcmp(s, commandstrings[i]))
          return i;
      }
      return -1;
    }
    
    static bool matchcpy(char * dest, size_t size, const char * src, const regmatch_t & srcmatch)
    {
      if (srcmatch.rm_so < 0)
        return false;
      size_t n = srcmatch.rm_eo - srcmatch.rm_so;
      if (n >= size)
        n = size-1;
      memcpy(dest, src + srcmatch.rm_so, n);
      dest[n] = 0;
      return true;
    }
    
    static inline int matchtoi(const char * src, const regmatch_t & srcmatch, int defval)
    {
      if (srcmatch.rm_so < 0)
        return defval;
      return atoi(src + srcmatch.rm_so);
    }
    
    parsed_ata_device::parsed_ata_device(smart_interface * intf, const char * dev_name)
    : smart_device(intf, dev_name, "ata", ""),
      m_num_commands(0),
      m_next_replay_command(0),
      m_replay_out_of_sync(false),
      m_ata_identify_is_cached(false)
    {
      memset(m_command_table, 0, sizeof(m_command_table));
    }
    
    parsed_ata_device::~parsed_ata_device() throw()
    {
      close();
    }
    
    bool parsed_ata_device::is_open() const
    {
      return (m_num_commands > 0);
    }
    
    // Parse stdin and build command table
    bool parsed_ata_device::open()
    {
      const char * pathname = get_dev_name();
      if (strcmp(pathname, "-"))
        return set_err(EINVAL);
      pathname = "<stdin>";
      // Fill buffer
      char buffer[64*1024];
      int size = 0;
      while (size < (int)sizeof(buffer)) {
        int nr = fread(buffer, 1, sizeof(buffer), stdin);
        if (nr <= 0)
          break;
        size += nr;
      }
      if (size <= 0)
        return set_err(ENOENT, "%s: Unexpected EOF", pathname);
      if (size >= (int)sizeof(buffer))
        return set_err(EIO, "%s: Buffer overflow", pathname);
      buffer[size] = 0;
    
      // Regex to match output from "-r ataioctl,2"
      static const char pattern[] = "^"
      "(" // (1
        "REPORT-IOCTL: DeviceF?D?=[^ ]+ Command=([A-Z ]*[A-Z])" // (2)
        "(" // (3
          "( InputParameter=([0-9]+))?" // (4 (5))
        "|"
          "( returned (-?[0-9]+)( errno=([0-9]+)[^\r\n]*)?)" // (6 (7) (8 (9)))
        ")" // )
        "[\r\n]" // EOL match necessary to match optional parts above
      "|"
        "===== \\[([A-Z ]*[A-Z])\\] DATA START " // (10)
      "|"
        "    *(En|Dis)abled status cached by OS, " // (11)
      ")"; // )
    
      // Compile regex
      regular_expression regex;
      if (!regex.compile(pattern, REG_EXTENDED))
        return set_err(EIO, "invalid regex");
    
      // Parse buffer
      const char * errmsg = 0;
      int i = -1, state = 0, lineno = 1;
      for (const char * line = buffer; *line; line = nextline(line, lineno)) {
        // Match line
        if (!(line[0] == 'R' || line[0] == '=' || line[0] == ' '))
          continue;
        const int nmatch = 1+11;
        regmatch_t match[nmatch];
        if (!regex.execute(line, nmatch, match))
          continue;
    
        char cmdname[40];
        if (matchcpy(cmdname, sizeof(cmdname), line, match[2])) { // "REPORT-IOCTL:... Command=%s ..."
          int nc = name2command(cmdname);
          if (nc < 0) {
            errmsg = "Unknown ATA command name"; break;
          }
          if (match[7].rm_so < 0) { // "returned %d"
            // Start of command
            if (!(state == 0 || state == 2)) {
              errmsg = "Missing REPORT-IOCTL result"; break;
            }
            if (++i >= max_num_commands) {
              errmsg = "Too many ATA commands"; break;
            }
            m_command_table[i].command = (smart_command_set)nc;
            m_command_table[i].select = matchtoi(line, match[5], 0); // "InputParameter=%d"
            state = 1;
          }
          else {
            // End of command
            if (!(state == 1 && (int)m_command_table[i].command == nc)) {
              errmsg = "Missing REPORT-IOCTL start"; break;
            }
            m_command_table[i].retval = matchtoi(line, match[7], -1); // "returned %d"
            m_command_table[i].errval = matchtoi(line, match[9], 0); // "errno=%d"
            state = 2;
          }
        }
        else if (matchcpy(cmdname, sizeof(cmdname), line, match[10])) { // "===== [%s] DATA START "
          // Start of sector hexdump
          int nc = name2command(cmdname);
          if (!(state == (nc == WRITE_LOG ? 1 : 2) && (int)m_command_table[i].command == nc)) {
              errmsg = "Unexpected DATA START"; break;
          }
          line = nextline(line, lineno);
          char * data = (char *)malloc(512);
          unsigned j;
          for (j = 0; j < 32; j++) {
            unsigned b[16];
            unsigned u1, u2; int n1 = -1;
            if (!(sscanf(line, "%3u-%3u: "
                            "%2x %2x %2x %2x %2x %2x %2x %2x "
                            "%2x %2x %2x %2x %2x %2x %2x %2x%n",
                         &u1, &u2,
                         b+ 0, b+ 1, b+ 2, b+ 3, b+ 4, b+ 5, b+ 6, b+ 7,
                         b+ 8, b+ 9, b+10, b+11, b+12, b+13, b+14, b+15, &n1) == 18
                  && n1 >= 56 && u1 == j*16 && u2 == j*16+15))
              break;
            for (unsigned k = 0; k < 16; k++)
              data[j*16+k] = b[k];
            line = nextline(line, lineno);
          }
          if (j < 32) {
            free(data);
            errmsg = "Incomplete sector hex dump"; break;
          }
          m_command_table[i].data = data;
          if (nc != WRITE_LOG)
            state = 0;
        }
        else if (match[11].rm_so > 0) { // "(En|Dis)abled status cached by OS"
          m_ata_identify_is_cached = true;
        }
      }
    
      if (!(state == 0 || state == 2))
        errmsg = "Missing REPORT-IOCTL result";
    
      if (!errmsg && i < 0)
        errmsg = "No information found";
    
      m_num_commands = i+1;
      m_next_replay_command = 0;
      m_replay_out_of_sync = false;
    
      if (errmsg) {
        close();
        return set_err(EIO, "%s(%d): Syntax error: %s", pathname, lineno, errmsg);
      }
      return true;
    }
    
    // Report warnings and free command table 
    bool parsed_ata_device::close()
    {
      if (m_replay_out_of_sync)
          pout("REPLAY-IOCTL: Warning: commands replayed out of sync\n");
      else if (m_next_replay_command != 0)
          pout("REPLAY-IOCTL: Warning: %d command(s) not replayed\n", m_num_commands-m_next_replay_command);
    
      for (int i = 0; i < m_num_commands; i++) {
        if (m_command_table[i].data) {
          free(m_command_table[i].data); m_command_table[i].data = 0;
        }
      }
      m_num_commands = 0;
      m_next_replay_command = 0;
      m_replay_out_of_sync = false;
      return true;
    }
    
    
    bool parsed_ata_device::ata_identify_is_cached() const
    {
      return m_ata_identify_is_cached;
    }
    
    
    // Simulate ATA command from command table
    int parsed_ata_device::ata_command_interface(smart_command_set command, int select, char * data)
    {
      // Find command, try round-robin if out of sync
      int i = m_next_replay_command;
      for (int j = 0; ; j++) {
        if (j >= m_num_commands) {
          pout("REPLAY-IOCTL: Warning: Command not found\n");
          errno = ENOSYS;
          return -1;
        }
        if (m_command_table[i].command == command && m_command_table[i].select == select)
          break;
        if (!m_replay_out_of_sync) {
          m_replay_out_of_sync = true;
          pout("REPLAY-IOCTL: Warning: Command #%d is out of sync\n", i+1);
        }
        if (++i >= m_num_commands)
          i = 0;
      }
      m_next_replay_command = i;
      if (++m_next_replay_command >= m_num_commands)
        m_next_replay_command = 0;
    
      // Return command data
      switch (command) {
        case IDENTIFY:
        case PIDENTIFY:
        case READ_VALUES:
        case READ_THRESHOLDS:
        case READ_LOG:
          if (m_command_table[i].data)
            memcpy(data, m_command_table[i].data, 512);
          break;
        case WRITE_LOG:
          if (!(m_command_table[i].data && !memcmp(data, m_command_table[i].data, 512)))
            pout("REPLAY-IOCTL: Warning: WRITE LOG data does not match\n");
          break;
        case CHECK_POWER_MODE:
          data[0] = (char)0xff;
        default:
          break;
      }
    
      if (m_command_table[i].errval)
        errno = m_command_table[i].errval;
      return m_command_table[i].retval;
    }
    
    } // namespace
    
    ata_device * get_parsed_ata_device(smart_interface * intf, const char * dev_name)
    {
      return new parsed_ata_device(intf, dev_name);
    }