Select Git revision
scsiata.cpp
scsiata.cpp 39.60 KiB
/*
* scsiata.cpp
*
* Home page of code is: http://smartmontools.sourceforge.net
*
* Copyright (C) 2006-9 Douglas Gilbert <dougg@torque.net>
* Copyright (C) 2009 Christian Franke <smartmontools-support@lists.sourceforge.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example COPYING); if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* The code in this file is based on the SCSI to ATA Translation (SAT)
* draft found at http://www.t10.org . The original draft used for this
* code is sat-r08.pdf which is not too far away from becoming a
* standard. The SAT commands of interest to smartmontools are the
* ATA PASS THROUGH SCSI (16) and ATA PASS THROUGH SCSI (12) defined in
* section 12 of that document.
*
* With more transports "hiding" SATA disks (and other S-ATAPI devices)
* behind a SCSI command set, accessing special features like SMART
* information becomes a challenge. The SAT standard offers ATA PASS
* THROUGH commands for special usages. Note that the SAT layer may
* be inside a generic OS layer (e.g. libata in linux), in a host
* adapter (HA or HBA) firmware, or somewhere on the interconnect
* between the host computer and the SATA devices (e.g. a RAID made
* of SATA disks and the RAID talks "SCSI" to the host computer).
* Note that in the latter case, this code does not solve the
* addressing issue (i.e. which SATA disk to address behind the logical
* SCSI (RAID) interface).
*
*/
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include "config.h"
#include "int64.h"
#include "extern.h"
#include "scsicmds.h"
#include "scsiata.h"
#include "atacmds.h" // ataReadHDIdentity()
#include "utility.h"
#include "dev_interface.h"
#include "dev_ata_cmd_set.h" // ata_device_with_command_set
#include "dev_tunnelled.h" // tunnelled_device<>
const char *scsiata_c_cvsid="$Id: scsiata.cpp,v 1.26 2009/03/14 13:49:49 chrfranke Exp $"
CONFIG_H_CVSID EXTERN_H_CVSID INT64_H_CVSID SCSICMDS_H_CVSID SCSIATA_H_CVSID UTILITY_H_CVSID;
/* for passing global control variables */
extern smartmonctrl *con;
#define DEF_SAT_ATA_PASSTHRU_SIZE 16
#define ATA_RETURN_DESCRIPTOR 9
namespace sat { // no need to publish anything, name provided for Doxygen
/// SAT support.
/// Implements ATA by tunnelling through SCSI.
class sat_device
: public tunnelled_device<
/*implements*/ ata_device
/*by tunnelling through a*/, scsi_device
>
{
public:
sat_device(smart_interface * intf, scsi_device * scsidev,
const char * req_type, int passthrulen = 0);
virtual ~sat_device() throw();
virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out);
private:
int m_passthrulen;
};
sat_device::sat_device(smart_interface * intf, scsi_device * scsidev,
const char * req_type, int passthrulen /*= 0*/)
: smart_device(intf, scsidev->get_dev_name(), "sat", req_type),
tunnelled_device<ata_device, scsi_device>(scsidev),
m_passthrulen(passthrulen)
{
set_info().info_name = strprintf("%s [SAT]", scsidev->get_info_name());
}
sat_device::~sat_device() throw()
{
}
// cdb[0]: ATA PASS THROUGH (16) SCSI command opcode byte (0x85)
// cdb[1]: multiple_count, protocol + extend
// cdb[2]: offline, ck_cond, t_dir, byte_block + t_length
// cdb[3]: features (15:8)
// cdb[4]: features (7:0)
// cdb[5]: sector_count (15:8)
// cdb[6]: sector_count (7:0)
// cdb[7]: lba_low (15:8)
// cdb[8]: lba_low (7:0)
// cdb[9]: lba_mid (15:8)
// cdb[10]: lba_mid (7:0)
// cdb[11]: lba_high (15:8)
// cdb[12]: lba_high (7:0)
// cdb[13]: device
// cdb[14]: (ata) command
// cdb[15]: control (SCSI, leave as zero)
//
// 24 bit lba (from MSB): cdb[12] cdb[10] cdb[8]
// 48 bit lba (from MSB): cdb[11] cdb[9] cdb[7] cdb[12] cdb[10] cdb[8]
//
//
// cdb[0]: ATA PASS THROUGH (12) SCSI command opcode byte (0xa1)
// cdb[1]: multiple_count, protocol + extend
// cdb[2]: offline, ck_cond, t_dir, byte_block + t_length
// cdb[3]: features (7:0)
// cdb[4]: sector_count (7:0)
// cdb[5]: lba_low (7:0)
// cdb[6]: lba_mid (7:0)
// cdb[7]: lba_high (7:0)
// cdb[8]: device
// cdb[9]: (ata) command
// cdb[10]: reserved
// cdb[11]: control (SCSI, leave as zero)
//
//
// ATA Return Descriptor (component of descriptor sense data)
// des[0]: descriptor code (0x9)
// des[1]: additional descriptor length (0xc)
// des[2]: extend (bit 0)
// des[3]: error
// des[4]: sector_count (15:8)
// des[5]: sector_count (7:0)
// des[6]: lba_low (15:8)
// des[7]: lba_low (7:0)
// des[8]: lba_mid (15:8)
// des[9]: lba_mid (7:0)
// des[10]: lba_high (15:8)
// des[11]: lba_high (7:0)
// des[12]: device
// des[13]: status
// PURPOSE
// This interface routine takes ATA SMART commands and packages
// them in the SAT-defined ATA PASS THROUGH SCSI commands. There are
// two available SCSI commands: a 12 byte and 16 byte variant; the
// one used is chosen via this->m_passthrulen .
// DETAILED DESCRIPTION OF ARGUMENTS
// device: is the file descriptor provided by (a SCSI dvice type) open()
// command: defines the different ATA operations.
// select: additional input data if needed (which log, which type of
// self-test).
// data: location to write output data, if needed (512 bytes).
// Note: not all commands use all arguments.
// RETURN VALUES
// -1 if the command failed
// 0 if the command succeeded,
// STATUS_CHECK routine:
// -1 if the command failed
// 0 if the command succeeded and disk SMART status is "OK"
// 1 if the command succeeded and disk SMART status is "FAILING"
bool sat_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out)
{
if (!ata_cmd_is_ok(in,
true, // data_out_support
true, // multi_sector_support
true) // ata_48bit_support
)
return false;
struct scsi_cmnd_io io_hdr;
struct scsi_sense_disect sinfo;
struct sg_scsi_sense_hdr ssh;
unsigned char cdb[SAT_ATA_PASSTHROUGH_16LEN];
unsigned char sense[32];
const unsigned char * ardp;
int status, ard_len, have_sense;
int extend = 0;
int ck_cond = 0; /* set to 1 to read register(s) back */
int protocol = 3; /* non-data */
int t_dir = 1; /* 0 -> to device, 1 -> from device */
int byte_block = 1; /* 0 -> bytes, 1 -> 512 byte blocks */
int t_length = 0; /* 0 -> no data transferred */
int passthru_size = DEF_SAT_ATA_PASSTHRU_SIZE;
memset(cdb, 0, sizeof(cdb));
memset(sense, 0, sizeof(sense));
// Set data direction
// TODO: This works only for commands where sector_count holds count!
switch (in.direction) {
case ata_cmd_in::no_data:
break;
case ata_cmd_in::data_in:
protocol = 4; // PIO data-in
t_length = 2; // sector_count holds count
break;
case ata_cmd_in::data_out:
protocol = 5; // PIO data-out
t_length = 2; // sector_count holds count
t_dir = 0; // to device
break;
default:
return set_err(EINVAL, "sat_device::ata_pass_through: invalid direction=%d",
(int)in.direction);
}
// Check condition if any output register needed
if (in.out_needed.is_set())
ck_cond = 1;
if ((SAT_ATA_PASSTHROUGH_12LEN == m_passthrulen) ||
(SAT_ATA_PASSTHROUGH_16LEN == m_passthrulen))
passthru_size = m_passthrulen;
// Set extend bit on 48-bit ATA command
if (in.in_regs.is_48bit_cmd()) {
if (passthru_size != SAT_ATA_PASSTHROUGH_16LEN)
return set_err(ENOSYS, "48-bit ATA commands require SAT ATA PASS-THROUGH (16)");
extend = 1;
}
cdb[0] = (SAT_ATA_PASSTHROUGH_12LEN == passthru_size) ?
SAT_ATA_PASSTHROUGH_12 : SAT_ATA_PASSTHROUGH_16;
cdb[1] = (protocol << 1) | extend;
cdb[2] = (ck_cond << 5) | (t_dir << 3) |
(byte_block << 2) | t_length;
if (passthru_size == SAT_ATA_PASSTHROUGH_12LEN) {
// ATA PASS-THROUGH (12)
const ata_in_regs & lo = in.in_regs;
cdb[3] = lo.features;
cdb[4] = lo.sector_count;
cdb[5] = lo.lba_low;
cdb[6] = lo.lba_mid;
cdb[7] = lo.lba_high;
cdb[8] = lo.device;
cdb[9] = lo.command;
}
else {
// ATA PASS-THROUGH (16)
const ata_in_regs & lo = in.in_regs;
const ata_in_regs & hi = in.in_regs.prev;
// Note: all 'in.in_regs.prev.*' are always zero for 28-bit commands
cdb[ 3] = hi.features;
cdb[ 4] = lo.features;
cdb[ 5] = hi.sector_count;
cdb[ 6] = lo.sector_count;
cdb[ 7] = hi.lba_low;
cdb[ 8] = lo.lba_low;
cdb[ 9] = hi.lba_mid;
cdb[10] = lo.lba_mid;
cdb[11] = hi.lba_high;
cdb[12] = lo.lba_high;
cdb[13] = lo.device;
cdb[14] = lo.command;
}
memset(&io_hdr, 0, sizeof(io_hdr));
if (0 == t_length) {
io_hdr.dxfer_dir = DXFER_NONE;
io_hdr.dxfer_len = 0;
} else if (t_dir) { /* from device */
io_hdr.dxfer_dir = DXFER_FROM_DEVICE;
io_hdr.dxfer_len = in.size;
io_hdr.dxferp = (unsigned char *)in.buffer;
memset(in.buffer, 0, in.size); // prefill with zeroes
} else { /* to device */
io_hdr.dxfer_dir = DXFER_TO_DEVICE;
io_hdr.dxfer_len = in.size;
io_hdr.dxferp = (unsigned char *)in.buffer;
}
io_hdr.cmnd = cdb;
io_hdr.cmnd_len = passthru_size;
io_hdr.sensep = sense;
io_hdr.max_sense_len = sizeof(sense);
io_hdr.timeout = SCSI_TIMEOUT_DEFAULT;
scsi_device * scsidev = get_tunnel_dev();
if (!scsidev->scsi_pass_through(&io_hdr)) {
if (con->reportscsiioctl > 0)
pout("sat_device::ata_pass_through: scsi_pass_through() failed, "
"errno=%d [%s]\n", scsidev->get_errno(), scsidev->get_errmsg());
return set_err(scsidev->get_err());
}
ardp = NULL;
ard_len = 0;
have_sense = sg_scsi_normalize_sense(io_hdr.sensep, io_hdr.resp_sense_len,
&ssh);
if (have_sense) {
/* look for SAT ATA Return Descriptor */
ardp = sg_scsi_sense_desc_find(io_hdr.sensep,
io_hdr.resp_sense_len,
ATA_RETURN_DESCRIPTOR);
if (ardp) {
ard_len = ardp[1] + 2;
if (ard_len < 12)
ard_len = 12;
else if (ard_len > 14)
ard_len = 14;
}
scsi_do_sense_disect(&io_hdr, &sinfo);
status = scsiSimpleSenseFilter(&sinfo);
if (0 != status) {
if (con->reportscsiioctl > 0) {
pout("sat_device::ata_pass_through: scsi error: %s\n",
scsiErrString(status));
if (ardp && (con->reportscsiioctl > 1)) {
pout("Values from ATA Return Descriptor are:\n");
dStrHex((const char *)ardp, ard_len, 1);
}
}
if (t_dir && (t_length > 0) && (in.direction == ata_cmd_in::data_in))
memset(in.buffer, 0, in.size);
return set_err(EIO, "scsi error %s", scsiErrString(status));
}
}
if (ck_cond) { /* expecting SAT specific sense data */
if (have_sense) {
if (ardp) {
if (con->reportscsiioctl > 1) {
pout("Values from ATA Return Descriptor are:\n");
dStrHex((const char *)ardp, ard_len, 1);
}
// Set output registers
ata_out_regs & lo = out.out_regs;
lo.error = ardp[ 3];
lo.sector_count = ardp[ 5];
lo.lba_low = ardp[ 7];
lo.lba_mid = ardp[ 9];
lo.lba_high = ardp[11];
lo.device = ardp[12];
lo.status = ardp[13];
if (in.in_regs.is_48bit_cmd()) {
ata_out_regs & hi = out.out_regs.prev;
hi.sector_count = ardp[ 4];
hi.lba_low = ardp[ 6];
hi.lba_mid = ardp[ 8];
hi.lba_high = ardp[10];
}
}
}
if (ardp == NULL)
ck_cond = 0; /* not the type of sense data expected */
}
if (0 == ck_cond) {
if (have_sense) {
if ((ssh.response_code >= 0x72) &&
((SCSI_SK_NO_SENSE == ssh.sense_key) ||
(SCSI_SK_RECOVERED_ERR == ssh.sense_key)) &&
(0 == ssh.asc) &&
(SCSI_ASCQ_ATA_PASS_THROUGH == ssh.ascq)) {
if (ardp) {
if (con->reportscsiioctl > 0) {
pout("Values from ATA Return Descriptor are:\n");
dStrHex((const char *)ardp, ard_len, 1);
}
return set_err(EIO, "SAT command failed");
}
}
}
}
return true;
}
} // namespace
/////////////////////////////////////////////////////////////////////////////
/* Attempt an IDENTIFY DEVICE ATA command via SATL when packet_interface
is false otherwise attempt IDENTIFY PACKET DEVICE. If successful
return true, else false */
static bool has_sat_pass_through(ata_device * dev, bool packet_interface = false)
{
ata_cmd_in in;
in.in_regs.command = (packet_interface ? ATA_IDENTIFY_PACKET_DEVICE : ATA_IDENTIFY_DEVICE);
char data[512];
in.set_data_in(data, 1);
return dev->ata_pass_through(in);
}
/////////////////////////////////////////////////////////////////////////////
/* Next two functions are borrowed from sg_lib.c in the sg3_utils
package. Same copyrght owner, same license as this file. */
int sg_scsi_normalize_sense(const unsigned char * sensep, int sb_len,
struct sg_scsi_sense_hdr * sshp)
{
if (sshp)
memset(sshp, 0, sizeof(struct sg_scsi_sense_hdr));
if ((NULL == sensep) || (0 == sb_len) || (0x70 != (0x70 & sensep[0])))
return 0;
if (sshp) {
sshp->response_code = (0x7f & sensep[0]);
if (sshp->response_code >= 0x72) { /* descriptor format */
if (sb_len > 1)
sshp->sense_key = (0xf & sensep[1]);
if (sb_len > 2)
sshp->asc = sensep[2];
if (sb_len > 3)
sshp->ascq = sensep[3];
if (sb_len > 7)
sshp->additional_length = sensep[7];
} else { /* fixed format */
if (sb_len > 2)
sshp->sense_key = (0xf & sensep[2]);
if (sb_len > 7) {
sb_len = (sb_len < (sensep[7] + 8)) ? sb_len :
(sensep[7] + 8);
if (sb_len > 12)
sshp->asc = sensep[12];
if (sb_len > 13)
sshp->ascq = sensep[13];
}
}
}
return 1;
}
const unsigned char * sg_scsi_sense_desc_find(const unsigned char * sensep,
int sense_len, int desc_type)
{
int add_sen_len, add_len, desc_len, k;
const unsigned char * descp;
if ((sense_len < 8) || (0 == (add_sen_len = sensep[7])))
return NULL;
if ((sensep[0] < 0x72) || (sensep[0] > 0x73))
return NULL;
add_sen_len = (add_sen_len < (sense_len - 8)) ?
add_sen_len : (sense_len - 8);
descp = &sensep[8];
for (desc_len = 0, k = 0; k < add_sen_len; k += desc_len) {
descp += desc_len;
add_len = (k < (add_sen_len - 1)) ? descp[1]: -1;
desc_len = add_len + 2;
if (descp[0] == desc_type)
return descp;
if (add_len < 0) /* short descriptor ?? */
break;
}
return NULL;
}
/////////////////////////////////////////////////////////////////////////////
namespace sat {
/// Cypress USB Brigde support.
class usbcypress_device
: public tunnelled_device<
/*implements*/ ata_device_with_command_set
/*by tunnelling through a*/, scsi_device
>
{
public:
usbcypress_device(smart_interface * intf, scsi_device * scsidev,
const char * req_type, unsigned char signature);
virtual ~usbcypress_device() throw();
protected:
virtual int ata_command_interface(smart_command_set command, int select, char * data);
unsigned char m_signature;
};
usbcypress_device::usbcypress_device(smart_interface * intf, scsi_device * scsidev,
const char * req_type, unsigned char signature)
: smart_device(intf, scsidev->get_dev_name(), "sat", req_type),
tunnelled_device<ata_device_with_command_set, scsi_device>(scsidev),
m_signature(signature)
{
set_info().info_name = strprintf("%s [USB Cypress]", scsidev->get_info_name());
}
usbcypress_device::~usbcypress_device() throw()
{
}
/* see cy7c68300c_8.pdf for more information */
#define USBCYPRESS_PASSTHROUGH_LEN 16
int usbcypress_device::ata_command_interface(smart_command_set command, int select, char *data)
{
struct scsi_cmnd_io io_hdr;
unsigned char cdb[USBCYPRESS_PASSTHROUGH_LEN];
unsigned char sense[32];
int copydata = 0;
int outlen = 0;
int ck_cond = 0; /* set to 1 to read register(s) back */
int protocol = 3; /* non-data */
int t_dir = 1; /* 0 -> to device, 1 -> from device */
int byte_block = 1; /* 0 -> bytes, 1 -> 512 byte blocks */
int t_length = 0; /* 0 -> no data transferred */
int feature = 0;
int ata_command = 0;
int sector_count = 0;
int lba_low = 0;
int lba_mid = 0;
int lba_high = 0;
int passthru_size = USBCYPRESS_PASSTHROUGH_LEN;
memset(cdb, 0, sizeof(cdb));
memset(sense, 0, sizeof(sense));
ata_command = ATA_SMART_CMD;
switch (command) {
case CHECK_POWER_MODE:
ata_command = ATA_CHECK_POWER_MODE;
ck_cond = 1;
copydata = 1;
break;
case READ_VALUES: /* READ DATA */
feature = ATA_SMART_READ_VALUES;
sector_count = 1; /* one (512 byte) block */
protocol = 4; /* PIO data-in */
t_length = 2; /* sector count holds count */
copydata = 512;
break;
case READ_THRESHOLDS: /* obsolete */
feature = ATA_SMART_READ_THRESHOLDS;
sector_count = 1; /* one (512 byte) block */
lba_low = 1;
protocol = 4; /* PIO data-in */
t_length = 2; /* sector count holds count */
copydata=512;
break;
case READ_LOG:
feature = ATA_SMART_READ_LOG_SECTOR;
sector_count = 1; /* one (512 byte) block */
lba_low = select;
protocol = 4; /* PIO data-in */
t_length = 2; /* sector count holds count */
copydata = 512;
break;
case WRITE_LOG:
feature = ATA_SMART_WRITE_LOG_SECTOR;
sector_count = 1; /* one (512 byte) block */
lba_low = select;
protocol = 5; /* PIO data-out */
t_length = 2; /* sector count holds count */
t_dir = 0; /* to device */
outlen = 512;
break;
case IDENTIFY:
ata_command = ATA_IDENTIFY_DEVICE;
sector_count = 1; /* one (512 byte) block */
protocol = 4; /* PIO data-in */
t_length = 2; /* sector count holds count */
copydata = 512;
break;
case PIDENTIFY:
ata_command = ATA_IDENTIFY_PACKET_DEVICE;
sector_count = 1; /* one (512 byte) block */
protocol = 4; /* PIO data-in */
t_length = 2; /* sector count (7:0) holds count */
copydata = 512;
break;
case ENABLE:
feature = ATA_SMART_ENABLE;
lba_low = 1;
break;
case DISABLE:
feature = ATA_SMART_DISABLE;
lba_low = 1;
break;
case STATUS:
// this command only says if SMART is working. It could be
// replaced with STATUS_CHECK below.
feature = ATA_SMART_STATUS;
ck_cond = 1;
break;
case AUTO_OFFLINE:
feature = ATA_SMART_AUTO_OFFLINE;
sector_count = select; // YET NOTE - THIS IS A NON-DATA COMMAND!!
break;
case AUTOSAVE:
feature = ATA_SMART_AUTOSAVE;
sector_count = select; // YET NOTE - THIS IS A NON-DATA COMMAND!!
break;
case IMMEDIATE_OFFLINE:
feature = ATA_SMART_IMMEDIATE_OFFLINE;
lba_low = select;
break;
case STATUS_CHECK:
// This command uses HDIO_DRIVE_TASK and has different syntax than
// the other commands.
feature = ATA_SMART_STATUS; /* SMART RETURN STATUS */
ck_cond = 1;
break;
default:
pout("Unrecognized command %d in usbcypress_device::ata_command_interface()\n"
"Please contact " PACKAGE_BUGREPORT "\n", command);
errno=ENOSYS;
return -1;
}
if (ATA_SMART_CMD == ata_command) {
lba_mid = 0x4f;
lba_high = 0xc2;
}
cdb[0] = m_signature; // bVSCBSignature : vendor-specific command
cdb[1] = 0x24; // bVSCBSubCommand : 0x24 for ATACB
cdb[2] = 0x0;
if (ata_command == ATA_IDENTIFY_DEVICE || ata_command == ATA_IDENTIFY_PACKET_DEVICE)
cdb[2] |= (1<<7); //set IdentifyPacketDevice for these cmds
cdb[3] = 0xff - (1<<0) - (1<<6); //features, sector count, lba low, lba med
// lba high, command are valid
cdb[4] = byte_block; //TransferBlockCount : 512
cdb[6] = feature;
cdb[7] = sector_count;
cdb[8] = lba_low;
cdb[9] = lba_mid;
cdb[10] = lba_high;
cdb[12] = ata_command;
memset(&io_hdr, 0, sizeof(io_hdr));
if (0 == t_length) {
io_hdr.dxfer_dir = DXFER_NONE;
io_hdr.dxfer_len = 0;
} else if (t_dir) { /* from device */
io_hdr.dxfer_dir = DXFER_FROM_DEVICE;
io_hdr.dxfer_len = copydata;
io_hdr.dxferp = (unsigned char *)data;
memset(data, 0, copydata); /* prefill with zeroes */
} else { /* to device */
io_hdr.dxfer_dir = DXFER_TO_DEVICE;
io_hdr.dxfer_len = outlen;
io_hdr.dxferp = (unsigned char *)data;
}
io_hdr.cmnd = cdb;
io_hdr.cmnd_len = passthru_size;
io_hdr.sensep = sense;
io_hdr.max_sense_len = sizeof(sense);
io_hdr.timeout = SCSI_TIMEOUT_DEFAULT;
scsi_device * scsidev = get_tunnel_dev();
if (!scsidev->scsi_pass_through(&io_hdr)) {
if (con->reportscsiioctl > 0)
pout("usbcypress_device::ata_command_interface: scsi_pass_through() failed, "
"errno=%d [%s]\n", scsidev->get_errno(), scsidev->get_errmsg());
set_err(scsidev->get_err());
return -1;
}
// if there is a sense the command failed or the
// device doesn't support usbcypress
if (io_hdr.scsi_status == SCSI_STATUS_CHECK_CONDITION &&
sg_scsi_normalize_sense(io_hdr.sensep, io_hdr.resp_sense_len, NULL)) {
return -1;
}
if (ck_cond) {
unsigned char ardp[8];
int ard_len = 8;
/* XXX this is racy if there other scsi command between
* the first usbcypress command and this one
*/
//pout("If you got strange result, please retry without traffic on the disc\n");
/* we use the same command as before, but we set
* * the read taskfile bit, for not executing usbcypress command,
* * but reading register selected in srb->cmnd[4]
*/
cdb[2] = (1<<0); /* ask read taskfile */
memset(sense, 0, sizeof(sense));
/* transfert 8 bytes */
memset(&io_hdr, 0, sizeof(io_hdr));
io_hdr.dxfer_dir = DXFER_FROM_DEVICE;
io_hdr.dxfer_len = ard_len;
io_hdr.dxferp = (unsigned char *)ardp;
memset(ardp, 0, ard_len); /* prefill with zeroes */
io_hdr.cmnd = cdb;
io_hdr.cmnd_len = passthru_size;
io_hdr.sensep = sense;
io_hdr.max_sense_len = sizeof(sense);
io_hdr.timeout = SCSI_TIMEOUT_DEFAULT;
if (!scsidev->scsi_pass_through(&io_hdr)) {
if (con->reportscsiioctl > 0)
pout("usbcypress_device::ata_command_interface: scsi_pass_through() failed, "
"errno=%d [%s]\n", scsidev->get_errno(), scsidev->get_errmsg());
set_err(scsidev->get_err());
return -1;
}
// if there is a sense the command failed or the
// device doesn't support usbcypress
if (io_hdr.scsi_status == SCSI_STATUS_CHECK_CONDITION &&
sg_scsi_normalize_sense(io_hdr.sensep, io_hdr.resp_sense_len, NULL)) {
return -1;
}
if (con->reportscsiioctl > 1) {
pout("Values from ATA Return Descriptor are:\n");
dStrHex((const char *)ardp, ard_len, 1);
}
if (ATA_CHECK_POWER_MODE == ata_command)
data[0] = ardp[2]; /* sector count (0:7) */
else if (STATUS_CHECK == command) {
if ((ardp[4] == 0x4f) && (ardp[5] == 0xc2))
return 0; /* GOOD smart status */
if ((ardp[4] == 0xf4) && (ardp[5] == 0x2c))
return 1; // smart predicting failure, "bad" status
// We haven't gotten output that makes sense so
// print out some debugging info
syserror("Error SMART Status command failed");
pout("This may be due to a race in usbcypress\n");
pout("Retry without other disc access\n");
pout("Please get assistance from " PACKAGE_HOMEPAGE "\n");
pout("Values from ATA Return Descriptor are:\n");
dStrHex((const char *)ardp, ard_len, 1);
return -1;
}
}
return 0;
}
#if 0 // Not used, see autodetect_sat_device() below.
static int isprint_string(const char *s)
{
while (*s) {
if (isprint(*s) == 0)
return 0;
s++;
}
return 1;
}
/* Attempt an IDENTIFY DEVICE ATA or IDENTIFY PACKET DEVICE command
If successful return 1, else 0 */
// TODO: Combine with has_sat_pass_through above
static int has_usbcypress_pass_through(ata_device * atadev, const char *manufacturer, const char *product)
{
struct ata_identify_device drive;
char model[40], serial[20], firm[8];
/* issue the command and do a checksum if possible */
if (ataReadHDIdentity(atadev, &drive) < 0)
return 0;
/* check if model string match, revision doesn't work for me */
format_ata_string(model, drive.model, 40);
if (*model == 0 || isprint_string(model) == 0)
return 0;
if (manufacturer && strncmp(manufacturer, model, 8))
pout("manufacturer doesn't match in pass_through test\n");
if (product &&
strlen(model) > 8 && strncmp(product, model+8, strlen(model)-8))
pout("product doesn't match in pass_through test\n");
/* check serial */
format_ata_string(serial, drive.serial_no, 20);
if (isprint_string(serial) == 0)
return 0;
format_ata_string(firm, drive.fw_rev, 8);
if (isprint_string(firm) == 0)
return 0;
return 1;
}
#endif
/////////////////////////////////////////////////////////////////////////////
/// JMicron USB Bridge support.
class usbjmicron_device
: public tunnelled_device<
/*implements*/ ata_device,
/*by tunnelling through a*/ scsi_device
>
{
public:
usbjmicron_device(smart_interface * intf, scsi_device * scsidev,
const char * req_type, int port);
virtual ~usbjmicron_device() throw();
virtual bool open();
virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out);
private:
bool get_registers(unsigned short addr, unsigned char * buf, unsigned short size);
int m_port;
};
usbjmicron_device::usbjmicron_device(smart_interface * intf, scsi_device * scsidev,
const char * req_type, int port)
: smart_device(intf, scsidev->get_dev_name(), "usbjmicron", req_type),
tunnelled_device<ata_device, scsi_device>(scsidev),
m_port(port)
{
set_info().info_name = strprintf("%s [USB JMicron]", scsidev->get_info_name());
}
usbjmicron_device::~usbjmicron_device() throw()
{
}
bool usbjmicron_device::open()
{
// Open USB first
if (!tunnelled_device<ata_device, scsi_device>::open())
return false;
// Detect port if not specified
if (m_port < 0) {
unsigned char regbuf[1] = {0};
if (!get_registers(0x720f, regbuf, sizeof(regbuf))) {
close();
return false;
}
if (regbuf[0] & 0x04)
m_port = 0;
else if (regbuf[0] & 0x40)
m_port = 1;
else {
close();
return set_err(ENODEV, "No device connected");
}
}
return true;
}
bool usbjmicron_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out)
{
if (!ata_cmd_is_ok(in,
true, // data_out_support
false, // !multi_sector_support
true) // ata_48bit_support (limited, see below)
)
return false;
bool is_smart_status = ( in.in_regs.command == ATA_SMART_CMD
&& in.in_regs.features == ATA_SMART_STATUS);
// Support output registers for SMART STATUS
if (in.out_needed.is_set() && !is_smart_status)
return set_err(ENOSYS, "ATA output registers not supported");
// Support 48-bit commands with zero high bytes
if (in.in_regs.is_real_48bit_cmd())
return set_err(ENOSYS, "48-bit ATA commands not fully supported");
if (m_port < 0)
return set_err(EIO, "Unknown JMicron port");
scsi_cmnd_io io_hdr;
memset(&io_hdr, 0, sizeof(io_hdr));
bool rwbit = true;
unsigned char smart_status = 0;
if (is_smart_status && in.out_needed.is_set()) {
io_hdr.dxfer_dir = DXFER_FROM_DEVICE;
io_hdr.dxfer_len = 1;
io_hdr.dxferp = &smart_status;
}
else switch (in.direction) {
case ata_cmd_in::no_data:
io_hdr.dxfer_dir = DXFER_NONE;
break;
case ata_cmd_in::data_in:
io_hdr.dxfer_dir = DXFER_FROM_DEVICE;
io_hdr.dxfer_len = in.size;
io_hdr.dxferp = (unsigned char *)in.buffer;
memset(in.buffer, 0, in.size);
break;
case ata_cmd_in::data_out:
io_hdr.dxfer_dir = DXFER_TO_DEVICE;
io_hdr.dxfer_len = in.size;
io_hdr.dxferp = (unsigned char *)in.buffer;
rwbit = false;
break;
default:
return set_err(EINVAL);
}
// Build pass through command
unsigned char cdb[12];
cdb[ 0] = 0xdf;
cdb[ 1] = (rwbit ? 0x10 : 0x00);
cdb[ 2] = 0x00;
cdb[ 3] = (unsigned char)(io_hdr.dxfer_len >> 8);
cdb[ 4] = (unsigned char)(io_hdr.dxfer_len );
cdb[ 5] = in.in_regs.features;
cdb[ 6] = in.in_regs.sector_count;
cdb[ 7] = in.in_regs.lba_low;
cdb[ 8] = in.in_regs.lba_mid;
cdb[ 9] = in.in_regs.lba_high;
cdb[10] = in.in_regs.device | (m_port == 0 ? 0xa0 : 0xb0);
cdb[11] = in.in_regs.command;
io_hdr.cmnd = cdb;
io_hdr.cmnd_len = sizeof(cdb);
unsigned char sense[32] = {0, };
io_hdr.sensep = sense;
io_hdr.max_sense_len = sizeof(sense);
io_hdr.timeout = SCSI_TIMEOUT_DEFAULT;
scsi_device * scsidev = get_tunnel_dev();
if (!scsidev->scsi_pass_through(&io_hdr)) {
if (con->reportscsiioctl > 0)
pout("usbjmicron_device::ata_pass_through: scsi_pass_through() failed, "
"errno=%d [%s]\n", scsidev->get_errno(), scsidev->get_errmsg());
return set_err(scsidev->get_err());
}
scsi_sense_disect sinfo;
scsi_do_sense_disect(&io_hdr, &sinfo);
int err = scsiSimpleSenseFilter(&sinfo);
if (err) {
if (con->reportscsiioctl > 0)
pout("usbjmicron_device::ata_pass_through: scsi error: %s\n",
scsiErrString(err));
return set_err(EIO, "scsi error %s", scsiErrString(err));
}
if (in.out_needed.is_set()) {
if (is_smart_status) {
switch (smart_status) {
case 0x01: case 0xc2:
out.out_regs.lba_high = 0xc2;
out.out_regs.lba_mid = 0x4f;
break;
case 0x00: case 0x2c:
out.out_regs.lba_high = 0x2c;
out.out_regs.lba_mid = 0xf4;
break;
}
}
#if 0 // Not needed for SMART STATUS, see also notes below
else {
// Read ATA output registers
// NOTE: The register addresses are not valid for some older chip revisions
// NOTE: There is a small race condition here!
unsigned char regbuf[16] = {0, };
if (!get_registers((m_port == 0 ? 0x8000 : 0x9000), regbuf, sizeof(regbuf)))
return false;
out.out_regs.sector_count = regbuf[ 0];
out.out_regs.lba_mid = regbuf[ 4];
out.out_regs.lba_low = regbuf[ 6];
out.out_regs.device = regbuf[ 9];
out.out_regs.lba_high = regbuf[10];
out.out_regs.error = regbuf[13];
out.out_regs.status = regbuf[14];
}
#endif
}
return true;
}
bool usbjmicron_device::get_registers(unsigned short addr,
unsigned char * buf, unsigned short size)
{
unsigned char cdb[12];
cdb[ 0] = 0xdf;
cdb[ 1] = 0x10;
cdb[ 2] = 0x00;
cdb[ 3] = (unsigned char)(size >> 8);
cdb[ 4] = (unsigned char)(size );
cdb[ 5] = 0x00;
cdb[ 6] = (unsigned char)(addr >> 8);
cdb[ 7] = (unsigned char)(addr );
cdb[ 8] = 0x00;
cdb[ 9] = 0x00;
cdb[10] = 0x00;
cdb[11] = 0xfd;
scsi_cmnd_io io_hdr;
memset(&io_hdr, 0, sizeof(io_hdr));
io_hdr.dxfer_dir = DXFER_FROM_DEVICE;
io_hdr.dxfer_len = size;
io_hdr.dxferp = buf;
io_hdr.cmnd = cdb;
io_hdr.cmnd_len = sizeof(cdb);
unsigned char sense[32] = {0, };
io_hdr.sensep = sense;
io_hdr.max_sense_len = sizeof(sense);
io_hdr.timeout = SCSI_TIMEOUT_DEFAULT;
scsi_device * scsidev = get_tunnel_dev();
if (!scsidev->scsi_pass_through(&io_hdr)) {
if (con->reportscsiioctl > 0)
pout("usbjmicron_device::get_registers: scsi_pass_through failed, "
"errno=%d [%s]\n", scsidev->get_errno(), scsidev->get_errmsg());
return set_err(scsidev->get_err());
}
scsi_sense_disect sinfo;
scsi_do_sense_disect(&io_hdr, &sinfo);
int err = scsiSimpleSenseFilter(&sinfo);
if (err) {
if (con->reportscsiioctl > 0)
pout("usbjmicron_device::get_registers: scsi error: %s\n",
scsiErrString(err));
return set_err(EIO, "scsi error %s", scsiErrString(err));
}
return true;
}
} // namespace
using namespace sat;
/////////////////////////////////////////////////////////////////////////////
// Return ATA->SCSI filter for SAT or USB.
ata_device * smart_interface::get_sat_device(const char * type, scsi_device * scsidev)
{
if (!strncmp(type, "sat", 3)) {
int ptlen = 0, n1 = -1, n2 = -1;
if (!(((sscanf(type, "sat%n,%d%n", &n1, &ptlen, &n2) == 1 && n2 == (int)strlen(type)) || n1 == (int)strlen(type))
&& (ptlen == 0 || ptlen == 12 || ptlen == 16))) {
set_err(EINVAL, "Option '-d sat,<n>' requires <n> to be 0, 12 or 16");
return 0;
}
return new sat_device(this, scsidev, type, ptlen);
}
else if (!strncmp(type, "usbcypress", 10)) {
unsigned signature = 0x24; int n1 = -1, n2 = -1;
if (!(((sscanf(type, "usbcypress%n,0x%x%n", &n1, &signature, &n2) == 1 && n2 == (int)strlen(type)) || n1 == (int)strlen(type))
&& signature <= 0xff)) {
set_err(EINVAL, "Option '-d usbcypress,<n>' requires <n> to be "
"an hexadecimal number between 0x0 and 0xff");
return 0;
}
return new usbcypress_device(this, scsidev, type, signature);
}
else if (!strncmp(type, "usbjmicron", 10)) {
int port = -1, n1 = -1, n2 = -1;
if (!( (sscanf(type, "usbjmicron%n,%d%n", &n1, &port, &n2) == 1
&& n2 == (int)strlen(type) && 0 <= port && port <= 1)
|| n1 == (int)strlen(type))) {
set_err(EINVAL, "Option '-d usbmicron,<n>' requires <n> to be 0 or 1");
return 0;
}
return new usbjmicron_device(this, scsidev, type, port);
}
else {
set_err(EINVAL, "Unknown USB device type '%s'", type);
return 0;
}
}
// Try to detect a SAT device behind a SCSI interface.
ata_device * smart_interface::autodetect_sat_device(scsi_device * scsidev,
const unsigned char * inqdata, unsigned inqsize)
{
if (!scsidev->is_open())
return 0;
ata_device * atadev = 0;
try {
// SAT ?
if (inqdata && inqsize >= 36 && !memcmp(inqdata + 8, "ATA ", 8)) { // TODO: Linux-specific?
atadev = new sat_device(this, scsidev, "");
if (has_sat_pass_through(atadev))
return atadev; // Detected SAT
atadev->release(scsidev);
delete atadev;
}
/* The new usbcypress_device(this, scsidev, "", 0x24) sends vendor specific comand to non-cypress devices.
* It's dangerous as other device may interpret such command as own valid vendor specific command.
* I commented it out untill problem resolved
*/
#if 0
// USB ?
{
atadev = new usbcypress_device(this, scsidev, "", 0x24);
if (has_usbcypress_pass_through(atadev,
(inqdata && inqsize >= 36 ? (const char*)inqdata + 8 : 0),
(inqdata && inqsize >= 36 ? (const char*)inqdata + 16 : 0) ))
return atadev; // Detected USB
atadev->release(scsidev);
delete atadev;
}
#endif
}
catch (...) {
if (atadev) {
atadev->release(scsidev);
delete atadev;
}
throw;
}
return 0;
}
/////////////////////////////////////////////////////////////////////////////
// USB device type detection
struct usb_id_entry {
int vendor_id, product_id, version;
const char * type;
};
const char d_sat[] = "sat";
const char d_jmicron[] = "usbjmicron";
const char d_cypress[] = "usbcypress";
const char d_unsup[] = "unsupported";
// Map USB IDs -> '-d type' string
const usb_id_entry usb_ids[] = {
{ 0x04b4, 0x6830, 0x0001, d_unsup }, // Cypress CY7C68300A (AT2)
{ 0x04b4, 0x6830, 0x0240, d_cypress }, // Cypress CY7C68300B/C (AT2LP)
//{ 0x04b4, 0x6831, -1, d_cypress }, // Cypress CY7C68310 (ISD-300LP)
{ 0x0c0b, 0xb159, 0x0103, d_unsup }, // Dura Micro ?
{ 0x0d49, 0x7310, 0x0125, d_sat }, // Maxtor OneTouch 4
//{ 0x0d49, -1, -1, d_sat }, // Maxtor Basics Desktop
{ 0x1058, 0x1001, 0x0104, d_sat }, // WD Elements Desktop
{ 0x13fd, 0x1240, 0x0104, d_sat }, // Initio ? (USB->SATA)
{ 0x13fd, 0x1340, 0x0208, d_sat }, // Initio ? (USB+SATA->SATA)
{ 0x152d, 0x2336, 0x0100, d_jmicron }, // JMicron JM20336 (USB+SATA->SATA, USB->2xSATA)
{ 0x152d, 0x2338, 0x0100, d_jmicron }, // JMicron JM20337/8 (USB->SATA+PATA, USB+SATA->PATA)
{ 0x152d, 0x2339, 0x0100, d_jmicron } // JMicron JM20339 (USB->SATA)
};
const unsigned num_usb_ids = sizeof(usb_ids)/sizeof(usb_ids[0]);
// Format USB ID for error messages
static std::string format_usb_id(int vendor_id, int product_id, int version)
{
if (version >= 0)
return strprintf("[0x%04x:0x%04x (0x%03x)]", vendor_id, product_id, version);
else
return strprintf("[0x%04x:0x%04x]", vendor_id, product_id);
}
// Get type name for USB device with known VENDOR:PRODUCT ID.
// Version not checked yet.
const char * smart_interface::get_usb_dev_type_by_id(int vendor_id, int product_id,
int version /*= -1*/)
{
const usb_id_entry * entry = 0;
bool state = false;
for (unsigned i = 0; i < num_usb_ids; i++) {
const usb_id_entry & e = usb_ids[i];
if (!(vendor_id == e.vendor_id && product_id == e.product_id))
continue;
// If two entries with same vendor:product ID have different
// types, use version (if provided by OS) to select entry.
bool s = (version >= 0 && version == e.version);
if (entry) {
if (s <= state) {
if (s == state && e.type != entry->type) {
set_err(EINVAL, "USB bridge %s type is ambiguous: '%s' or '%s'",
format_usb_id(vendor_id, product_id, version).c_str(),
e.type, entry->type);
return 0;
}
continue;
}
}
state = s;
entry = &e;
}
if (!entry) {
set_err(EINVAL, "Unknown USB bridge %s",
format_usb_id(vendor_id, product_id, version).c_str());
return 0;
}
if (entry->type == d_unsup) {
set_err(ENOSYS, "Unsupported USB bridge %s",
format_usb_id(vendor_id, product_id, version).c_str());
return 0;
}
return entry->type;
}