Skip to content
Snippets Groups Projects
Select Git revision
  • 8b72c849151d901b01283bdf3aa7a97483ecad02
  • master default
  • trunk
  • RELEASE_6_5_DRIVEDB
  • RELEASE_6_6_DRIVEDB
  • RELEASE_7_0_DRIVEDB
  • RELEASE_7_2_DRIVEDB
  • RELEASE_7_3_DRIVEDB
  • RELEASE_6_0_DRIVEDB
  • RELEASE_6_1_DRIVEDB
  • RELEASE_6_2_DRIVEDB
  • RELEASE_6_3_DRIVEDB
  • RELEASE_6_4_DRIVEDB
  • tags/RELEASE_7_4
  • tags/RELEASE_7_3
  • RELEASE_5_41_DRIVEDB
  • RELEASE_5_42_DRIVEDB
  • RELEASE_5_43_DRIVEDB
  • tags/RELEASE_7_2
  • tags/RELEASE_7_1
  • tags/RELEASE_7_0
  • RELEASE_5_40_DRIVEDB
22 results

WARNINGS

Blame
  • mcmc.m 17.36 KiB
    (* ::Package:: *)
    
    (* Mathematica Package *)
    
    BeginPackage["MCMC`"];
    
    MCMC::usage = "MCMC[plogexpr, paramspec, numsteps]
    
    Perform MCMC sampling of the supplied probability distribution.
    
    1. plogexpr should be an expression that gives the unnormalized log
    probability for a particular choice of parameter values.
    
    2. paramspec either gives the results of a previous MCMC run (w/ same
    plogexpr--just to add on more iterations), or lists the model parameters
    like so:
    {{param1, ival1, spread1, domain1}, ...}
    a) Each param should be symbolic.
    b) ival is the initial parameter value.
    c) spread is roughly how far to try to change the parameter each step in
    the Markov chain. In this routine we select new parameters values based
    on an exponential distribution of the form Exp[\[CapitalDelta]param/spread]. My
    Numerical Recipes book advises setting these spreads so that the average
    candidate acceptance is 10-40%.
    d) Each domain is either Reals or a list of all possible values the
    parameter can take on (needs to be a uniform grid).
    
    3. numsteps is the number of Markov chain steps to perform.";
    
    MCMCModelFit::usage = "MCMCModelFit[data, errors, model, paramspec, ivars, numsteps]
    
    Perform MCMC samping of the probability distribution resulting from
    modeling data with model, assuming Gaussian errors. Straightforward
    wrapper around MCMC and GetChisqExpr.
    
    1. data must be given as:
    {{ivar1, dvar1}, {ivar2, dvar2}, ..., {ivarN, dvarN}}
    where ivar is the independent variable, dvar is the dependent variable,
    and N is the number of data points. Either the ivars or dvars can be
    vector valued; if the independent variable is a vector, then we're just
    dealing with a function of multiple variables, and if the dependent variable
    is, then we have a vector field.
    
    2. errors must have the same length as data (= N), with each entry giving
    the errors in the corresponding dependent variable supplied in data. If
    each dvar is just a number, then so too should be each element of errors;
    if instead each dvar is a vector, then each element of errors should also
    be a vector of the same length.
    
    3. model should evaluate to either a number or a numerical vector
    (depending on dvar) when all parameters and independent variables are set.
    
    4. paramspec either gives the results of a previous MCMC run (w/ same
    plogexpr--just to add on more iterations), or lists the model parameters
    like so:
    {{param1, ival1, spread1, domain1}, ...}
    a) Each param should be symbolic.
    b) ival is the initial parameter value.
    c) spread is roughly how far to try to change the parameter each step in
    the Markov chain. In this routine we select new parameters values based
    on an exponential distribution of the form Exp[\[CapitalDelta]param/spread]. My
    Numerical Recipes book advises setting these spreads so that the average
    candidate acceptance is 10-40%.
    d) Each domain is either Reals or a list of all possible values the
    parameter can take on (needs to be a uniform grid).
    
    5. ivars gives a list of symbolic independent variables, in the same
    order as in data, on which model depends. If there's only one, then it
    need not be a list.
    
    6. numsteps is the number of Markov chain steps to perform.";
    
    GetChisqExpr::usage = "GetChisqExpr[data_List, errors_List, model_, ivars_List]
    
    Compute the chi^2 statistic for the comparison between data and model.
    (Not the reduced chi^2.)
    
    1. data must be given as:
    {{ivar1, dvar1}, {ivar2, dvar2}, ..., {ivarN, dvarN}}
    where ivar is the independent variable, dvar is the dependent variable,
    and N is the number of data points. Either the ivars or dvars can be
    vector valued; if the independent variable is a vector, then we're just
    dealing with a function of multiple variables, and if the dependent variable
    is, then we have a vector field.
    
    2. errors must have the same length as data (= N), with each entry giving
    the errors in the corresponding dependent variable supplied in data. If
    each dvar is just a number, then so too should be each element of errors;
    if instead each dvar is a vector, then each element of errors should also
    be a vector of the same length.
    
    3. ivars gives a list of symbolic independent variables, in the same
    order as in data, on which model depends. If there's only one, then it
    need not be a list.";
    
    MCMCResult::usage = "If your result object is named mcmcobj, try: mcmcobj[\"Properties\"].";
    
    Clear["MCMC`*"];
    
    Begin["`Private`"];
    
    Options[MCMC] = {
    	"BurnFraction" -> 0.1,
    	"Debug" -> False,
    	"ProgressMonitor" -> Column[{Row[{"Step", "/", "MaxSteps", "  ", TimeProgress["TimeElapsed", "DoneFraction"]}],
    		"CurrentParameters"}],
    	"ProgressInterval" -> 10,
    	"SaveTo" -> None,
    	"SaveInterval" -> 1000,
    	"FitResiduals"-> False
    };
    
    MCMC::nonnumer = "Log probability given supplied model does not evaluate to a number for initial parameters; instead evaluated to: `1`\nAbort!";
    MCMC::badinp = "Bad input: `1`.";
    MCMC[plogexpr_, paramspec_, num_Integer, opts : OptionsPattern[]] /;
    	TestMCMCInput[paramspec, num] :=
    	Module[{params, spreads, state, stateval, sets, Ns, discrete,
    		continuous, stateplog, candplog, cand, candval, hist, prevhist, prevnum,
    		prevtime, n, i, t1, t2, burn, alpha, transplog, status = "Initializing...", resume,
    		bestfitparams, z, corr, vars, plogfunc, resultlist, bestfitplot,fitresiduals},
    		Monitor[
    		If[Head[paramspec] === List, (*is user attempting to resume previous mcmc run?*)
    			resume = False; (*no*)
    
    			params = paramspec[[All, 1]];
    			stateval = paramspec[[All, 2]];
    			spreads = paramspec[[All, 3]];
    			sets = paramspec[[All, 4]];
    			prevhist = {};
    			prevnum = 0;
    			prevtime = 0;
    		,
    			resume = True; (*yes*)
    
    			params = "Parameters" /. paramspec[[1]];
    			stateval = Last["ParameterRun" /. paramspec[[1]]];
    			spreads = "ProposalSpreads" /. paramspec[[1]];
    			sets = "ParameterDomains" /. paramspec[[1]];
    
    			prevhist := Drop[Sp["ParameterRun", "ParametersLogPRun", "TransitionLogPRun"] /. paramspec[[1]], -1];
    			prevnum = Length[prevhist];
    			prevtime = "TimeSpent" /. paramspec[[1]]
    		];
    
    		n = Length[spreads]; (* # of parameters *)
    		Ns = Length /@ sets; (* size of each parameter's domain; 0 for real-valued parameters *)
    
    		status = "Evaluating chisq...";
    		plogfunc = Function[Evaluate[params], Evaluate[plogexpr]];
       
    		discrete = Flatten[Position[sets, _List]]; (* list of parameters that are discrete valued *)
    		continuous = Complement[Range[n], discrete]; (* same, but instead continuous valued *)
    
    		cand = state = stateval; (* set initial condition *)
    
    		If[! discrete === {},
    			(* ensure discrete parameters' ICs are within their domains *)
    			state[[discrete]] = Nearest[sets[[#]] -> Range[Length[sets[[#]]]], stateval[[#]]][[1]] & /@ discrete;
    			(* convert discrete parameters' proposal dist spreads to index spreads. doesn't really work for nonuniform domains... *)
    			spreads[[discrete]] /= (Mean[GetDifferences[sets[[#]]]] & /@ discrete);
    		];
    
    		t1 = t2 = AbsoluteTime[];
    
    		status = "Initial step...";
    		If[resume,
    			stateplog = Last["ParametersLogPRun" /. paramspec[[1]]];
    		,
    			stateplog = plogfunc @@ stateval;
    			(*stateplog = Abs[plogfunc @@ stateval] (* Modified by Xisco *)*)
    		];
    		candplog = 0;
    
    		If[!NumericQ[stateplog],
    			Message[MCMC::nonnumer, stateplog];
    			Return[$Failed];
    		];
    
    		(* hist is complete run history. set initial point. *)
    		hist = Table[{0., 0., 0.}, {num}];
    
    		For[i = 2, i <= num, i++,
    			hist[[i-1]] = {stateval, stateplog, transplog(*Min[0, candplog - stateplog]*)};
    
    			(* save all information about run at intervals, if desired *)
    			If[Head[OptionValue["SaveTo"]] === String && Mod[i, OptionValue["SaveInterval"]] == 0,
    				Put[{
    						"BestFitParameters" -> Rule @@@ Sp[params, Mean[Join[prevhist, hist][[1 ;; i - 1 + prevnum, 1]]] // N],
    						"ParameterErrors" -> Rule @@@ Sp[params, StandardDeviation[Join[prevhist, hist][[1 ;; i - 1 + prevnum, 1]]] // N],
    						"AverageAcceptance" -> N[Mean[Exp[Join[prevhist, hist][[1 ;; i - 1 + prevnum, 3]]]]],
    						"TimeSpent" -> (t2 - t1) Second + prevtime,
    						"Parameters" -> params,
    						"ProposalSpreads" -> spreads,
    						"ParameterDomains" -> sets,
    						"BurnFraction" -> OptionValue["BurnFraction"],
    						"BurnEnd" -> burn,
    						"ParameterRun" -> Join[prevhist, hist][[1 ;; i - 1 + prevnum, 1]],
    						"ParametersLogPRun" -> Join[prevhist, hist][[1 ;; i - 1 + prevnum, 2]],
    						"TransitionLogPRun" -> Join[prevhist, hist][[1 ;; i - 1 + prevnum, 3]],
    						"BurnFraction" -> OptionValue["BurnFraction"]
    					}
    				,
    					OptionValue["SaveTo"]
    				]
    			];
    
    			(* update status indicator *)
    			If[Mod[i, OptionValue["ProgressInterval"]] == 0,
    				status = OptionValue["ProgressMonitor"] /. \
    					{
    						"CurrentParameters" -> Rule @@@ Sp[params, stateval],
    						"TimeElapsed" -> t2 - t1,
    						"DoneFraction" -> (i - 1)/(num),
    						"Step" -> i,
    						"MaxSteps" -> num,
    						"AverageAcceptance" -> If[And[! FreeQ[OptionValue["ProgressMonitor"], "AverageAcceptance"], i > 2],
    							Chop[N[Mean[Exp[hist[[2 ;; i-1, 3]]]]]], Null
    						]
    					}
    			];
    
    			alpha = RandomReal[{0, 1}, n]; (* random variables with which to generate candidate point *)
    			If[! continuous === {},
    				cand[[continuous]] = ExpSampleList[state[[continuous]], spreads[[continuous]], alpha[[continuous]]];
    			];
    			If[! discrete === {},
    				cand[[discrete]] = DiscExpSampleList[state[[discrete]], Ns[[discrete]], spreads[[discrete]], alpha[[discrete]]]
    			];
    
    			candval = cand;
    			If[! discrete === {},
    				candval[[discrete]] = sets[[#, cand[[#]]]] & /@ discrete;
    			];
    
    			If[OptionValue["Debug"], Print["cand ",cand," ","candval",candval]];
    
    			candplog = plogfunc @@ candval;
    			(*candplog = Abs[plogfunc @@ candval];(* Modified by Xisco *)*)
    
    
    			transplog = Min[0., candplog - stateplog +
    				If[! discrete === {}, (* discrete proposal dist is not symmetric (continuous is). take this into account. *)
    					Total[DiscExpPlog @@@ Sp[state[[discrete]], cand[[discrete]], Ns[[discrete]], spreads[[discrete]]]] -
    						Total[DiscExpPlog @@@ Sp[cand[[discrete]], state[[discrete]], Ns[[discrete]], spreads[[discrete]]]]
    				,
    					0
    				]
    			];
    
    			alpha = RandomReal[{0, 1}]; (* random variable with which to determine whether to accept candidate *)
    
    			If[OptionValue["Debug"], Print["transplog ",transplog," vs. random plog ",Log[alpha]]];
    
    			If[Log[alpha] < transplog,
    				 If[OptionValue["Debug"], Print["cand accepted; had plog ",transplog]];
    
    				 state = cand;
    				 stateval = candval;
    				 stateplog = candplog
    				 ,
    				 If[OptionValue["Debug"], Print["cand rejected; had plog ",transplog]];
    			];
    			t2 = AbsoluteTime[];
    		];
    
    		hist[[num]] = {stateval, stateplog, Min[0, candplog - stateplog]};
    
    		burn = Ceiling[Min[(num + prevnum)/2, Max[1000, (num + prevnum)*OptionValue["BurnFraction"]]]];
    
    		bestfitparams = Rule @@@ Sp[params, Mean[Join[prevhist, hist][[burn ;; num + prevnum, 1]]] // N];
    
    		status = "Computing correlation matrix...";
    		corr = Correlation[Join[prevhist, hist][[All, 1]]];
    
    		status = "Done!";
    		, status];
    
    		resultlist = {
    			"BestFitParameters" -> bestfitparams,
    			"ParameterErrors" -> Rule @@@ Sp[params, StandardDeviation[Join[prevhist, hist][[burn ;; num + prevnum, 1]]] // N],
    			"AverageAcceptance" -> N[Mean[Exp[Join[prevhist, hist][[burn ;; num + prevnum, 3]]]]],
    			"TimeSpent" -> (t2 - t1) Second + prevtime,
    			"NumSteps" -> num + prevnum,
    			"Parameters" -> params,
    			"ProposalSpreads" -> spreads,
    			"ParameterDomains" -> sets,
    			"BurnFraction" -> OptionValue["BurnFraction"],
    			"BurnEnd" -> burn,
    			"CorrelationMatrix" -> MatrixForm[corr],
    			"ParameterRun" -> Join[prevhist, hist][[All, 1]],
    			"ParametersLogPRun" -> Join[prevhist, hist][[All, 2]],
    			"TransitionLogPRun" -> Join[prevhist, hist][[All, 3]]
    		};
    		MCMCResult[resultlist]
    	];
    
    Options[MCMCModelFit] = Join[Options[MCMC], {"MakeBestFitPlot" -> False}];
    MCMCModelFit[data_List, errors_List, model_, paramspec_, vars_, num_Integer, opts : OptionsPattern[]] /;
    	TestMCMCMFInput[data, errors, model, vars] :=
    	Module[{plogexpr, result, bestfitplot},
    		(*1/2 comes from converting chi^2 to Gaussian*)
    		plogexpr = -GetChisqExpr[data, errors, model, vars] / 2;
    		
    		result = MCMC[plogexpr, paramspec, num, Sequence@@FilterRules[{opts}, Options[MCMC][[All, 1]]]];
    		
    		If[OptionValue["MakeBestFitPlot"],
    			bestfitplot = If[Length[vars] == 1,
    				Show[
    					Plot[Evaluate[model /. result["BestFitParameters"] /. vars[[1]] -> z], {z, Min[data[[All, 1]]], Max[data[[All, 1]]]}, PlotRange -> All],
    					If[Length[data[[1, 2]]] == 0,
    						ListPlot[data, Joined->False, PlotRange -> All],
    						ListPlot[Table[Sp[data[[All, 1]], data[[All, 2, i]]], {i, 1, Length[model]}], Joined->False, PlotRange -> All]
    					],
    					Frame -> True,
    					Axes -> False
    				]
    			,
    				"Number of ind. variables > 1."
    			];
    			AppendTo[result[[1]], "BestFitPlot" -> bestfitplot];
    		];
    		result
    	];
    
    DiscExpNorm = Compile[{{i, _Integer}, {NN, _Integer}, {t, _Real}},
    	(1 + Exp[1/t] - Exp[(i - NN)/t] - Exp[(1 - i)/t])/(Exp[1/t] - 1)];
    
    DiscExpNormList = Compile[{{i, _Integer, 1}, {NN, _Integer, 1}, {t, _Real, 1}},
    	(1 + Exp[1/t] - Exp[(i - NN)/t] - Exp[(1 - i)/t])/(Exp[1/t] - 1)];
    
    DiscExpPlog = Compile[{{i, _Integer}, {j, _Integer}, {NN, _Integer}, {t, _Real}},
    	-Abs[j - i]/t - Log[DiscExpNorm[i, NN, t]]];
    
    DiscExpSample = Compile[{{i, _Integer}, {NN, _Integer}, {t, _Real}, {alpha, _Real}},
    		Max[If[DiscExpNorm[i, NN, t] alpha <= Exp[1/t] (1 - Exp[-i/t])/(Exp[1/t] - 1),
    			Ceiling[t Log[1 + DiscExpNorm[i, NN, t] alpha (Exp[1/t] - 1) Exp[(i - 1)/t]]]
    		,
    			Ceiling[i - t Log[DiscExpNorm[i, NN, t] alpha (1 - Exp[1/t]) + Exp[1/t] + 1 - Exp[-(i - 1)/t]]]
    		], 1]
    	];
    
    DiscExpSampleList[i_List, NN_List, t_List, alpha_List] := DiscExpSample @@@ Transpose[{i, NN, t, alpha}];
    
    ExpSample = Compile[{state, spreads, alpha},
    	state - Sign[1/2 - alpha] spreads *	(Log[2.] + Log[Min[alpha, 1 - alpha]])
    ];
    
    ExpSampleList[state_List, spreads_List, alpha_List] := ExpSample @@@ Transpose[{state, spreads, alpha}];
    
    Chisq[dpoints_List, modpoints_List, errors_List] /; Length[Dimensions[modpoints]] == 2 :=
    	Total[Flatten[(modpoints - dpoints)^2 / errors^2]];
    GetChisqExpr[data_List, errors_List, model_, invars_] :=
    	Module[{ipoints, dpoints, modpoints, modfunc, vars},
    		If[Length[invars] == 0,
    			vars = {invars},
    			vars = invars
    		];
    
    		If[NumericQ[data[[1, 1]]],
    			ipoints = List /@ data[[All, 1]],
    			ipoints = data[[All, 1]]
    		];
    
    		If[NumericQ[data[[1, 2]]],
    			dpoints = List /@ data[[All, 2]];
    			modfunc = Function[Evaluate[vars], {Evaluate[model]}];
    		,
    			dpoints = data[[All, 2]];
    			modfunc = Function[Evaluate[vars], Evaluate[model]];
    		];
    
    		modpoints = modfunc @@@ ipoints;
    
    		Chisq[dpoints, modpoints, errors]
    	];
    
    TimeLeft[timesofar_, fractiondone_] := If[fractiondone == 0., 60 * 60 * 24. - 1., timesofar * (1. / fractiondone - 1.)];
    
    Clear[TimeProgress];
    TimeProgress[timesofar_?NumericQ, fractiondone_?NumericQ] :=
    	Row[{ProgressIndicator[fractiondone],
    		", Time elapsed: " <> DateString[timesofar, {"Hour24", ":", "Minute", ":", "Second"}],
    		", Time left: " <>	DateString[TimeLeft[timesofar, fractiondone], {"Hour24", ":", "Minute", ":", "Second"}]}];
    
    Sp[x__List] /; (Equal @@ Length /@ {x}) && Length[{x}] > 1 :=
    		Transpose[{x}];
    
    (*Gets y[i+1] - y[i]*)
    GetDifferences[list_List] :=
    		Drop[(RotateLeft[list] - list), -1];
    
    TestMCMCInput[paramspec_, num_Integer] :=
    (
    	If[!MatchQ[paramspec, _MCMCResult],
    		If[!(Length[Dimensions[paramspec]] == 2 && Dimensions[paramspec][[2]] == 4 &&
    			MatchQ[paramspec[[All, 1]], {__Symbol}]),
    			Message[MCMC::badinp, "bad parameter specification"];
    			Return[False]
    		]
    	];
    
    	If[num < 2,
    		Message[MCMC::badinp, "need at least 2 steps"];
    		Return[False]
    	];
    
    	Return[True];
    );
    
    TestMCMCMFInput[data_List, errors_List, model_, vars_] :=
    (
    	If[!(MatchQ[data, {{{__?NumericQ}, {__?NumericQ}}..}] ||
    		MatchQ[data, {{_?NumericQ, {__?NumericQ}}..}] ||
    		MatchQ[data, {{_?NumericQ, _?NumericQ}..}] ||
    		MatchQ[data, {{{__?NumericQ}, _?NumericQ}..}]),
    
    		Message[MCMC::badinp, "data shaped inconsistently/incorrectly"];
    		Return[False];
    	];
    
    	If[Length[data /. _?NumericQ -> 1 // Union] > 1,
    		Message[MCMC::badinp, "data shaped inconsistently"];
    		Return[False];
    	];
    
    	If[!(data[[All, 2]] /. _?NumericQ -> 1) === (errors /. _?NumericQ -> 1),
    		Message[MCMC::badinp, "data shaped differently than errors"];
    		Return[False];
    	];
    
    	If[!If[# == 0, 1, #]&[Length[data[[1,1]]]] == If[# == 0, 1, #]&[Length[vars]],
    		Message[MCMC::badinp, "# of independent vars in data different from specified"];
    		Return[False];
    	];
    
    	Return[True];
    );
    
    Clear[MCMCResult];
    Format[MCMCResult[list_List]] := "MCMCResult"["BestFitParameters" /. list, "\[LeftSkeleton]" <> ToString[Length["ParameterRun" /. list]] <> "\[RightSkeleton]"];
    
    (this:MCMCResult[list_List])["ParameterRunPlots", opts___] :=
    	Table[
    		ListPlot[Transpose[("ParameterRun" /. list)][[i]],
    			AxesLabel -> {"Step", ToString[this["Parameters"][[i]]]},
    			FrameLabel -> {"Step", ToString[this["Parameters"][[i]]]},
    			opts
    		] // Rasterize,
    	{i, Length[this["Parameters"]]}];
    
    (this:MCMCResult[list_List])["ParameterHistograms", opts___] :=
    	Table[If[this["NumSteps"] > 1*^6,
    		SmoothHistogram[#,
    			Filling -> Axis,
    			Axes -> {True, False},
    			Ticks -> {Automatic, None},
    			AxesLabel -> {ToString[this["Parameters"][[i]]], None},
    			opts]&
    	,
    		Histogram[#,
    			Ticks -> {Automatic, None},
    			Axes -> {True, False},
    			AxesLabel -> {ToString[this["Parameters"][[i]]], None},
    			opts]&][
    		Transpose[("ParameterRun" /. list)[[this["BurnEnd"] ;; this["NumSteps"]]]][[i]]
    	], {i, Length[this["Parameters"]]}];
    
    (this:MCMCResult[list_List])["Properties"] := Join[list[[All, 1]], {"ParameterRunPlots", "ParameterHistograms"}];
    
    (this:MCMCResult[list_List])[str_String] := str /. list;
    (this:MCMCResult[list_List])[{str__String}] := Rule @@@ Sp[{str}, this /@ {str}];
    
    End[];
    
    EndPackage[];