Skip to content
Snippets Groups Projects
Select Git revision
  • d9dfd01bfa975c55f1292774833445c1d521e41c
  • trunk
  • RELEASE_6_5_DRIVEDB
  • RELEASE_6_6_DRIVEDB
  • RELEASE_7_0_DRIVEDB
  • RELEASE_7_2_DRIVEDB
  • RELEASE_7_3_DRIVEDB
  • RELEASE_6_0_DRIVEDB
  • RELEASE_6_1_DRIVEDB
  • RELEASE_6_2_DRIVEDB
  • RELEASE_6_3_DRIVEDB
  • RELEASE_6_4_DRIVEDB
  • tags/RELEASE_7_4
  • tags/RELEASE_7_3
  • RELEASE_5_41_DRIVEDB
  • RELEASE_5_42_DRIVEDB
  • RELEASE_5_43_DRIVEDB
  • tags/RELEASE_7_2
  • tags/RELEASE_7_1
  • tags/RELEASE_7_0
  • RELEASE_5_40_DRIVEDB
21 results

atacmds.c

Blame
  • semi_coherent_search_using_MCMC.py 1.82 KiB
    import pyfstat
    import numpy as np
    
    # Properties of the GW data
    sqrtSX = 1e-23
    tstart = 1000000000
    duration = 100*86400
    tend = tstart + duration
    
    # Properties of the signal
    F0 = 30.0
    F1 = -1e-10
    F2 = 0
    Alpha = np.radians(83.6292)
    Delta = np.radians(22.0144)
    tref = .5*(tstart+tend)
    
    depth = 10
    h0 = sqrtSX / depth
    label = 'semicoherent_search_using_MCMC'
    outdir = 'data'
    
    data = pyfstat.Writer(
        label=label, outdir=outdir, tref=tref,
        tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
        Delta=Delta, h0=h0, sqrtSX=sqrtSX)
    data.make_data()
    
    # The predicted twoF, given by lalapps_predictFstat can be accessed by
    twoF = data.predict_fstat()
    print 'Predicted twoF value: {}\n'.format(twoF)
    
    DeltaF0 = 1e-7
    DeltaF1 = 1e-13
    VF0 = (np.pi * duration * DeltaF0)**2 / 3.0
    VF1 = (np.pi * duration**2 * DeltaF1)**2 * 4/45.
    print '\nV={:1.2e}, VF0={:1.2e}, VF1={:1.2e}\n'.format(VF0*VF1, VF0, VF1)
    
    theta_prior = {'F0': {'type': 'unif',
                          'lower': F0-DeltaF0/2.,
                          'upper': F0+DeltaF0/2.},
                   'F1': {'type': 'unif',
                          'lower': F1-DeltaF1/2.,
                          'upper': F1+DeltaF1/2.},
                   'F2': F2,
                   'Alpha': Alpha,
                   'Delta': Delta
                   }
    
    ntemps = 1
    log10beta_min = -1
    nwalkers = 100
    nsteps = [300, 300]
    
    mcmc = pyfstat.MCMCSemiCoherentSearch(
        label=label, outdir=outdir, nsegs=10,
        sftfilepattern='{}/*{}*sft'.format(outdir, label),
        theta_prior=theta_prior, tref=tref, minStartTime=tstart, maxStartTime=tend,
        nsteps=nsteps, nwalkers=nwalkers, ntemps=ntemps,
        log10beta_min=log10beta_min)
    mcmc.transform_dictionary = dict(
        F0=dict(subtractor=F0, symbol='$f-f^\mathrm{s}$'),
        F1=dict(subtractor=F1, symbol='$\dot{f}-\dot{f}^\mathrm{s}$'))
    mcmc.run()
    mcmc.plot_corner(add_prior=True)
    mcmc.print_summary()