Select Git revision
test_fsig.py
Forked from
finesse / pykat
Source project has a limited visibility.
-
Daniel Brown authored
adding in fsig command (not parsing yet). See example test_fsig.py in bin folder. Also made component variable an optional argument for xaxis and x2axis which will break previous scripts. Did this as when setting the parameter to tune, the Param object contains whatever component owns that parameter so no need to pass it twice. Also stops someone passing a parameter not for the component stated.
Daniel Brown authoredadding in fsig command (not parsing yet). See example test_fsig.py in bin folder. Also made component variable an optional argument for xaxis and x2axis which will break previous scripts. Did this as when setting the parameter to tune, the Param object contains whatever component owns that parameter so no need to pass it twice. Also stops someone passing a parameter not for the component stated.
plot_data.py 2.03 KiB
import pyfstat
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import os
from tqdm import tqdm
from oct2py import octave
import glob
from scipy.stats import rv_continuous, chi2
filenames = glob.glob("CollectedOutput/*.txt")
plt.style.use('paper')
Tspan = 100 * 86400
class maxtwoFinNoise_gen(rv_continuous):
def _pdf(self, twoF, Ntrials):
F = twoF/2.0
alpha = (1 + F)*np.exp(-F)
a = Ntrials/2.0*F*np.exp(-F)
b = (1 - alpha)**(Ntrials-1)
return a*b
df_list = []
for fn in filenames:
df = pd.read_csv(
fn, sep=' ', names=['dF0', 'dF1', 'twoF', 'runTime'])
df['CLUSTER_ID'] = fn.split('_')[1]
df_list.append(df)
df = pd.concat(df_list)
print 'Number of samples = ', len(df)
fig, ax = plt.subplots()
ax.hist(df.twoF, bins=50, histtype='step', color='k', normed=True, linewidth=1,
label='Monte-Carlo histogram')
maxtwoFinNoise = maxtwoFinNoise_gen(a=0)
Ntrials_effective, loc, scale = maxtwoFinNoise.fit(df.twoF.values, floc=0, fscale=1)
print 'Ntrials effective = {:1.2e}'.format(Ntrials_effective)
twoFsmooth = np.linspace(0, df.twoF.max(), 1000)
best_fit_pdf = maxtwoFinNoise.pdf(twoFsmooth, Ntrials_effective)
ax.plot(twoFsmooth, best_fit_pdf, '-r',
label=r'$p(2\mathcal{{F}}_{{\rm max}})$ for {} $N_{{\rm trials}}$'
.format(pyfstat.texify_float(Ntrials_effective, d=2)))
pval = 1e-6
twoFsmooth_HD = np.linspace(
twoFsmooth[np.argmax(best_fit_pdf)], df.twoF.max(), 100000)
best_fit_pdf_HD = maxtwoFinNoise.pdf(twoFsmooth_HD, Ntrials_effective)
spacing = twoFsmooth_HD[1]-twoFsmooth_HD[0]
print twoFsmooth_HD[np.argmin(np.abs(best_fit_pdf_HD - pval))], spacing
ax.set_xlabel('$\widetilde{2\mathcal{F}}$')
ax.set_xlim(0, 60)
ax.legend(frameon=False, fontsize=6, loc=2)
fig.tight_layout()
fig.savefig('allsky_noise_twoF_histogram.png')
from latex_macro_generator import write_to_macro
write_to_macro('AllSkyMCNoiseOnlyMaximum', '{:1.1f}'.format(np.max(df.twoF)),
'../macros.tex')
write_to_macro('AllSkyMCNoiseN', len(df), '../macros.tex')