Skip to content
Snippets Groups Projects
Select Git revision
  • 4406f5125547fb0bb28d5362815e7be7b637efe6
  • master default
2 results

test_fsig.py

Blame
  • Forked from finesse / pykat
    Source project has a limited visibility.
    • Daniel Brown's avatar
      4d173029
      adding in fsig command (not parsing yet). See example test_fsig.py in bin... · 4d173029
      Daniel Brown authored
      adding in fsig command (not parsing yet). See example test_fsig.py in bin folder. Also made component variable an optional argument for xaxis and x2axis which will break previous scripts. Did this as when setting the parameter to tune, the Param object contains whatever component owns that parameter so no need to pass it twice. Also stops someone passing a parameter not for the component stated.
      4d173029
      History
      adding in fsig command (not parsing yet). See example test_fsig.py in bin...
      Daniel Brown authored
      adding in fsig command (not parsing yet). See example test_fsig.py in bin folder. Also made component variable an optional argument for xaxis and x2axis which will break previous scripts. Did this as when setting the parameter to tune, the Param object contains whatever component owns that parameter so no need to pass it twice. Also stops someone passing a parameter not for the component stated.
    plot_data.py 2.03 KiB
    import pyfstat
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
    import os
    from tqdm import tqdm
    from oct2py import octave
    import glob
    from scipy.stats import rv_continuous, chi2
    
    filenames = glob.glob("CollectedOutput/*.txt")
    
    plt.style.use('paper')
    
    Tspan = 100 * 86400
    
    
    class maxtwoFinNoise_gen(rv_continuous):
        def _pdf(self, twoF, Ntrials):
            F = twoF/2.0
            alpha = (1 + F)*np.exp(-F)
            a = Ntrials/2.0*F*np.exp(-F)
            b = (1 - alpha)**(Ntrials-1)
            return a*b
    
    
    df_list = []
    for fn in filenames:
        df = pd.read_csv(
            fn, sep=' ', names=['dF0', 'dF1', 'twoF', 'runTime'])
        df['CLUSTER_ID'] = fn.split('_')[1]
        df_list.append(df)
    df = pd.concat(df_list)
    print 'Number of samples = ', len(df)
    
    fig, ax = plt.subplots()
    
    ax.hist(df.twoF, bins=50, histtype='step', color='k', normed=True, linewidth=1,
            label='Monte-Carlo histogram')
    
    maxtwoFinNoise = maxtwoFinNoise_gen(a=0)
    Ntrials_effective, loc, scale = maxtwoFinNoise.fit(df.twoF.values, floc=0, fscale=1)
    print 'Ntrials effective = {:1.2e}'.format(Ntrials_effective)
    twoFsmooth = np.linspace(0, df.twoF.max(), 1000)
    best_fit_pdf = maxtwoFinNoise.pdf(twoFsmooth, Ntrials_effective)
    ax.plot(twoFsmooth, best_fit_pdf, '-r',
            label=r'$p(2\mathcal{{F}}_{{\rm max}})$ for {} $N_{{\rm trials}}$'
            .format(pyfstat.texify_float(Ntrials_effective, d=2)))
    
    pval = 1e-6
    twoFsmooth_HD = np.linspace(
        twoFsmooth[np.argmax(best_fit_pdf)], df.twoF.max(), 100000)
    best_fit_pdf_HD = maxtwoFinNoise.pdf(twoFsmooth_HD, Ntrials_effective)
    spacing = twoFsmooth_HD[1]-twoFsmooth_HD[0]
    print twoFsmooth_HD[np.argmin(np.abs(best_fit_pdf_HD - pval))], spacing
    
    ax.set_xlabel('$\widetilde{2\mathcal{F}}$')
    ax.set_xlim(0, 60)
    ax.legend(frameon=False, fontsize=6, loc=2)
    fig.tight_layout()
    fig.savefig('allsky_noise_twoF_histogram.png')
    
    from latex_macro_generator import write_to_macro
    write_to_macro('AllSkyMCNoiseOnlyMaximum', '{:1.1f}'.format(np.max(df.twoF)),
                   '../macros.tex')
    write_to_macro('AllSkyMCNoiseN', len(df), '../macros.tex')