Skip to content
Snippets Groups Projects
Select Git revision
  • d782c29576506cf8d2844f1a480eedcf1288bc12
  • master default
2 results

test_fsig.py

Blame
  • Forked from finesse / pykat
    Source project has a limited visibility.
    • Daniel Brown's avatar
      4d173029
      adding in fsig command (not parsing yet). See example test_fsig.py in bin... · 4d173029
      Daniel Brown authored
      adding in fsig command (not parsing yet). See example test_fsig.py in bin folder. Also made component variable an optional argument for xaxis and x2axis which will break previous scripts. Did this as when setting the parameter to tune, the Param object contains whatever component owns that parameter so no need to pass it twice. Also stops someone passing a parameter not for the component stated.
      4d173029
      History
      adding in fsig command (not parsing yet). See example test_fsig.py in bin...
      Daniel Brown authored
      adding in fsig command (not parsing yet). See example test_fsig.py in bin folder. Also made component variable an optional argument for xaxis and x2axis which will break previous scripts. Did this as when setting the parameter to tune, the Param object contains whatever component owns that parameter so no need to pass it twice. Also stops someone passing a parameter not for the component stated.
    generate_table.py 2.25 KiB
    import pyfstat
    import numpy as np
    
    outdir = 'data'
    
    label = 'allsky_setup'
    data_label = '{}_data'.format(label)
    
    # Properties of the GW data
    sqrtSX = 2e-23
    tstart = 1000000000
    Tspan = 100*86400
    tend = tstart + Tspan
    
    # Fixed properties of the signal
    F0_center = 30
    F1_center = 1e-10
    F2 = 0
    tref = .5*(tstart+tend)
    
    
    VF0 = VF1 = 100
    DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
    DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
    
    DeltaAlpha = 0.05
    DeltaDelta = 0.05
    
    depth = 100
    
    nsteps = 50
    run_setup = [((nsteps, 0), 20, False),
                 ((nsteps, 0), 11, False),
                 ((nsteps, 0), 6, False),
                 ((nsteps, 0), 3, False),
                 ((nsteps, nsteps), 1, False)]
    
    h0 = sqrtSX / float(depth)
    r = np.random.uniform(0, 1)
    theta = np.random.uniform(0, 2*np.pi)
    F0 = F0_center + 3*np.sqrt(r)*np.cos(theta)/(np.pi**2 * Tspan**2)
    F1 = F1_center + 45*np.sqrt(r)*np.sin(theta)/(4*np.pi**2 * Tspan**4)
    
    Alpha = 0
    Delta = 0
    
    psi = np.random.uniform(-np.pi/4, np.pi/4)
    phi = np.random.uniform(0, 2*np.pi)
    cosi = np.random.uniform(-1, 1)
    
    data = pyfstat.Writer(
        label=data_label, outdir=outdir, tref=tref,
        tstart=tstart, F0=F0, F1=F1, F2=F2, duration=Tspan, Alpha=Alpha,
        Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
        detector='H1,L1')
    data.make_data()
    predicted_twoF = data.predict_fstat()
    
    theta_prior = {'F0': {'type': 'unif',
                          'lower': F0-DeltaF0/2.,
                          'upper': F0+DeltaF0/2.},
                   'F1': {'type': 'unif',
                          'lower': F1-DeltaF1/2.,
                          'upper': F1+DeltaF1/2.},
                   'F2': F2,
                   'Alpha': {'type': 'unif',
                             'lower': Alpha-DeltaAlpha/2.,
                             'upper': Alpha+DeltaAlpha/2.},
                   'Delta': {'type': 'unif',
                             'lower': Delta-DeltaDelta/2.,
                             'upper': Delta+DeltaDelta/2.},
                   }
    
    ntemps = 1
    log10temperature_min = -1
    nwalkers = 100
    
    mcmc = pyfstat.MCMCFollowUpSearch(
        label=label, outdir=outdir,
        sftfilepath='{}/*{}*sft'.format(outdir, data_label),
        theta_prior=theta_prior,
        tref=tref, minStartTime=tstart, maxStartTime=tend,
        nwalkers=nwalkers, ntemps=ntemps,
        log10temperature_min=log10temperature_min)
    mcmc.run(run_setup)