Skip to content
Snippets Groups Projects
Commit 72a5c650 authored by Andreas Freise's avatar Andreas Freise
Browse files

adding fft propagation basics and an example

parent 978dbf2f
Branches
No related tags found
No related merge requests found
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import matplotlib
BACKEND = 'Qt4Agg'
matplotlib.use(BACKEND)
import pylab as pl
from pykat.utilities.optics.gaussian_beams import HG_beam, beam_param
from pykat.fft.fft import *
import numpy as np
import scipy
def main():
# wavelength
Lambda = 1064.0E-9
# distance to propagate/focal length of lens
D = 10
# mix coefficients
c1 = 0.7
c2 = 0.3
# mode indices
n1 = 2
m1 = 3
n2 = 1
m2 = 0
######## Generate Grid stucture required for FFT propagation ####
xpoints = 512
ypoints = 512
xsize = 0.05
ysize = 0.05
# Apply offset such that the center of the beam lies in the
# center of a grid tile
xoffset = -0.5*xsize/xpoints
yoffset = -0.5*ysize/ypoints
shape = grid(xpoints, ypoints, xsize, ysize, xoffset, yoffset)
x = shape.xaxis
y = shape.yaxis
######## Generates a mixture of fields ################
gx = beam_param(w0=2e-3, z=0)
gy = beam_param(w0=2e-3, z=0)
beam = HG_beam(gx,gy,n1,m1)
field1 = beam.Unm(x,y)
beam2 = HG_beam(gx,gy,n2,m2)
field2 = beam2.Unm(x,y)
global field, laser1, laser2
field = np.sqrt(c1)*field1 + np.sqrt(c2)*field2
####### Apply phase plate #######################################
laser1 = field*(np.conjugate(field1))
laser2 = field*(np.conjugate(field2))
####### Propagates the field by FFT ##############################
laser1 = FFT_propagate(laser1,shape,Lambda,D,1)
laser2 = FFT_propagate(laser2,shape,Lambda,D,1)
f=D
#laser1 = apply_lens(laser1, shape, Lambda, f)
#laser2 = apply_lens(laser2, shape, Lambda, f)
laser1 = apply_thin_lens(laser1, shape, Lambda, f)
laser2 = apply_thin_lens(laser2, shape, Lambda, f)
laser1 = FFT_propagate(laser1,shape,Lambda,D,1)
laser2 = FFT_propagate(laser2,shape,Lambda,D,1)
# midpoint computation for even number of points only!
midx=(xpoints)//2
midy=(ypoints)//2
coef1 = np.abs(laser1[midx,midy])
coef2 = np.abs(laser2[midx,midy])
ratio = (coef1/coef2)**2
pc2 = 1/(1+ratio)
pc1 = pc2*ratio
print("c1 {0}, coef1 {1}, error {3} (raw output {2})".format(c1, pc1, coef1, np.abs(c1-pc1)))
print("c2 {0}, coef2 {1}, error {3} (raw output {2})".format(c2, pc2, coef2, np.abs(c2-pc2)))
# plot hand tuned for certain ranges and sizes, not automtically scaled
fig=pl.figure(110)
fig.clear()
off1=xpoints/10
off2=xpoints/6
pl.subplot(1, 3, 1)
pl.imshow(abs(field))
pl.xlim(midx-off1,midx+off1)
pl.ylim(midy-off1,midy+off1)
pl.draw()
pl.subplot(1, 3, 2)
pl.imshow(abs(laser1))
pl.xlim(midx-off2,midx+off2)
pl.ylim(midy-off2,midy+off2)
pl.draw()
pl.subplot(1, 3, 3)
pl.imshow(abs(laser2))
pl.xlim(midx-off2,midx+off2)
pl.ylim(midy-off2,midy+off2)
pl.draw()
if in_ipython():
pl.show(block=0)
else:
pl.show(block=1)
# testing if the script is run from within ipython
def in_ipython():
try:
__IPYTHON__
except NameError:
return False
else:
return True
if __name__ == '__main__':
main()
"""
------------------------------------------------------
Functions related to FFT propogation of beams.
Work in progress, currently these functions are
untested!
Andreas 30.11.2014
http://www.gwoptics.org/pykat/
------------------------------------------------------
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np
def apply_lens(field, grid, Lambda, f):
# apply a phase factor representing a lens
k= 2.0*np.pi/Lambda
return field*(np.exp(2.0 * 1j * k * (2*f - np.sign(f)*np.sqrt((2.0*f)**2-grid.r_squared))))
def apply_thin_lens(field, grid, Lambda, f):
# apply a phase factor representing a thin lens
k= 2.0*np.pi/Lambda
return field*(np.exp(1.0 * 1j * k * grid.r_squared/(2.0*f)))
def FFT_propagate(field, grid, Lambda, distance, nr):
# FFT propagation code in a fixed grid
k = 2.0*np.pi/Lambda*nr
plD = np.pi*Lambda*distance/nr
field = np.fft.fft2(field)
field = field * np.exp(-1j*k*distance) * np.exp(1j*plD*grid.fft_ir_squared)
field = np.fft.ifft2(field)
return field
def FFT_scale_propagate(field, grid0, grid1, Lambda, distance, w0, w1, nr):
# FFT propagation code with an adaptive grid size.
# Propagates to a scaled coordinate system, see Virgo Book of
# Physics pages 179-184, the scaling factor is given
# as w1/w0 with w0 the beam size at the start of propagation
# and w1 the expected beam size at the end of propatation.
# NOT YET TESTED
k = 2.0*np.pi/Lambda*nr
plD = np.pi*Lambda*distance*w0/w1/nr
z0 = distance/(w1/w0-1.0)
# initial scaling
field = field * np.exp(-1j*k*grid0.r_squared/(2.0*z0))
field = np.fft.fft2(field)
# scaled propagator
field = field * np.exp(-1j*k*distance) * np.exp(1j*plD*grid0.fft_ir_squared)
field = np.fft.ifft2(field)
# final scaling
field = field *w0/w1 * np.exp(1j* grid1.r_squared*(z0+L)/(2.0*z0*z0))
return field
class grid():
# Data structure to describe the size and axes for a (x,y) data array
# of complex beam amplitudes. Also contain also data structures for
# FFT propagation
def __init__ (self,xpoints, ypoints, xsize, ysize, xoffset, yoffset):
self.xpoints=xpoints
self.ypoints=ypoints
self.xsize=xsize
self.ysize=ysize
self.xoffset=xoffset
self.yoffset=yoffset
# compute x and y axis
self.xstep=self.xsize/self.xpoints
self.ystep=self.ysize/self.ypoints
xvector= np.arange(self.xpoints)
yvector= np.arange(self.ypoints)
self.xaxis=-self.xsize/2.0 + self.xstep/2.0 + xvector*self.xstep + self.xoffset
self.yaxis=-self.ysize/2.0 + self.ystep/2.0 + yvector*self.ystep + self.yoffset
# and some useful variables based on the axis
self.X,self.Y = np.meshgrid(self.xaxis,self.yaxis)
self.r_squared = (self.X)**2 + (self.Y)**2
self.r = np.sqrt(self.r_squared)
self.angle = np.arctan2(self.Y,self.X)
# compute frequency axis
self.xaxis_fft = np.fft.fftshift(np.fft.fftfreq(self.xpoints))/self.xstep
self.yaxis_fft = np.fft.fftshift(np.fft.fftfreq(self.ypoints))/self.ystep
# some useful variables based on the frequency axis
self.fft_X,self.fft_Y = np.meshgrid(self.xaxis_fft, self.yaxis_fft)
self.fft_ir_squared= np.fft.ifftshift((self.fft_X)**2+(self.fft_Y)**2)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment