Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
pykat
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Sebastian Steinlechner
pykat
Commits
72a5c650
Commit
72a5c650
authored
10 years ago
by
Andreas Freise
Browse files
Options
Downloads
Patches
Plain Diff
adding fft propagation basics and an example
parent
978dbf2f
Branches
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
examples/fft/spatial_filter.py
+122
-0
122 additions, 0 deletions
examples/fft/spatial_filter.py
pykat/fft/fft.py
+96
-0
96 additions, 0 deletions
pykat/fft/fft.py
with
218 additions
and
0 deletions
examples/fft/spatial_filter.py
0 → 100644
+
122
−
0
View file @
72a5c650
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
unicode_literals
import
matplotlib
BACKEND
=
'
Qt4Agg
'
matplotlib
.
use
(
BACKEND
)
import
pylab
as
pl
from
pykat.utilities.optics.gaussian_beams
import
HG_beam
,
beam_param
from
pykat.fft.fft
import
*
import
numpy
as
np
import
scipy
def
main
():
# wavelength
Lambda
=
1064.0E-9
# distance to propagate/focal length of lens
D
=
10
# mix coefficients
c1
=
0.7
c2
=
0.3
# mode indices
n1
=
2
m1
=
3
n2
=
1
m2
=
0
######## Generate Grid stucture required for FFT propagation ####
xpoints
=
512
ypoints
=
512
xsize
=
0.05
ysize
=
0.05
# Apply offset such that the center of the beam lies in the
# center of a grid tile
xoffset
=
-
0.5
*
xsize
/
xpoints
yoffset
=
-
0.5
*
ysize
/
ypoints
shape
=
grid
(
xpoints
,
ypoints
,
xsize
,
ysize
,
xoffset
,
yoffset
)
x
=
shape
.
xaxis
y
=
shape
.
yaxis
######## Generates a mixture of fields ################
gx
=
beam_param
(
w0
=
2e-3
,
z
=
0
)
gy
=
beam_param
(
w0
=
2e-3
,
z
=
0
)
beam
=
HG_beam
(
gx
,
gy
,
n1
,
m1
)
field1
=
beam
.
Unm
(
x
,
y
)
beam2
=
HG_beam
(
gx
,
gy
,
n2
,
m2
)
field2
=
beam2
.
Unm
(
x
,
y
)
global
field
,
laser1
,
laser2
field
=
np
.
sqrt
(
c1
)
*
field1
+
np
.
sqrt
(
c2
)
*
field2
####### Apply phase plate #######################################
laser1
=
field
*
(
np
.
conjugate
(
field1
))
laser2
=
field
*
(
np
.
conjugate
(
field2
))
####### Propagates the field by FFT ##############################
laser1
=
FFT_propagate
(
laser1
,
shape
,
Lambda
,
D
,
1
)
laser2
=
FFT_propagate
(
laser2
,
shape
,
Lambda
,
D
,
1
)
f
=
D
#laser1 = apply_lens(laser1, shape, Lambda, f)
#laser2 = apply_lens(laser2, shape, Lambda, f)
laser1
=
apply_thin_lens
(
laser1
,
shape
,
Lambda
,
f
)
laser2
=
apply_thin_lens
(
laser2
,
shape
,
Lambda
,
f
)
laser1
=
FFT_propagate
(
laser1
,
shape
,
Lambda
,
D
,
1
)
laser2
=
FFT_propagate
(
laser2
,
shape
,
Lambda
,
D
,
1
)
# midpoint computation for even number of points only!
midx
=
(
xpoints
)
//
2
midy
=
(
ypoints
)
//
2
coef1
=
np
.
abs
(
laser1
[
midx
,
midy
])
coef2
=
np
.
abs
(
laser2
[
midx
,
midy
])
ratio
=
(
coef1
/
coef2
)
**
2
pc2
=
1
/
(
1
+
ratio
)
pc1
=
pc2
*
ratio
print
(
"
c1 {0}, coef1 {1}, error {3} (raw output {2})
"
.
format
(
c1
,
pc1
,
coef1
,
np
.
abs
(
c1
-
pc1
)))
print
(
"
c2 {0}, coef2 {1}, error {3} (raw output {2})
"
.
format
(
c2
,
pc2
,
coef2
,
np
.
abs
(
c2
-
pc2
)))
# plot hand tuned for certain ranges and sizes, not automtically scaled
fig
=
pl
.
figure
(
110
)
fig
.
clear
()
off1
=
xpoints
/
10
off2
=
xpoints
/
6
pl
.
subplot
(
1
,
3
,
1
)
pl
.
imshow
(
abs
(
field
))
pl
.
xlim
(
midx
-
off1
,
midx
+
off1
)
pl
.
ylim
(
midy
-
off1
,
midy
+
off1
)
pl
.
draw
()
pl
.
subplot
(
1
,
3
,
2
)
pl
.
imshow
(
abs
(
laser1
))
pl
.
xlim
(
midx
-
off2
,
midx
+
off2
)
pl
.
ylim
(
midy
-
off2
,
midy
+
off2
)
pl
.
draw
()
pl
.
subplot
(
1
,
3
,
3
)
pl
.
imshow
(
abs
(
laser2
))
pl
.
xlim
(
midx
-
off2
,
midx
+
off2
)
pl
.
ylim
(
midy
-
off2
,
midy
+
off2
)
pl
.
draw
()
if
in_ipython
():
pl
.
show
(
block
=
0
)
else
:
pl
.
show
(
block
=
1
)
# testing if the script is run from within ipython
def
in_ipython
():
try
:
__IPYTHON__
except
NameError
:
return
False
else
:
return
True
if
__name__
==
'
__main__
'
:
main
()
This diff is collapsed.
Click to expand it.
pykat/fft/fft.py
0 → 100644
+
96
−
0
View file @
72a5c650
"""
------------------------------------------------------
Functions related to FFT propogation of beams.
Work in progress, currently these functions are
untested!
Andreas 30.11.2014
http://www.gwoptics.org/pykat/
------------------------------------------------------
"""
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
unicode_literals
import
numpy
as
np
def
apply_lens
(
field
,
grid
,
Lambda
,
f
):
# apply a phase factor representing a lens
k
=
2.0
*
np
.
pi
/
Lambda
return
field
*
(
np
.
exp
(
2.0
*
1j
*
k
*
(
2
*
f
-
np
.
sign
(
f
)
*
np
.
sqrt
((
2.0
*
f
)
**
2
-
grid
.
r_squared
))))
def
apply_thin_lens
(
field
,
grid
,
Lambda
,
f
):
# apply a phase factor representing a thin lens
k
=
2.0
*
np
.
pi
/
Lambda
return
field
*
(
np
.
exp
(
1.0
*
1j
*
k
*
grid
.
r_squared
/
(
2.0
*
f
)))
def
FFT_propagate
(
field
,
grid
,
Lambda
,
distance
,
nr
):
# FFT propagation code in a fixed grid
k
=
2.0
*
np
.
pi
/
Lambda
*
nr
plD
=
np
.
pi
*
Lambda
*
distance
/
nr
field
=
np
.
fft
.
fft2
(
field
)
field
=
field
*
np
.
exp
(
-
1j
*
k
*
distance
)
*
np
.
exp
(
1j
*
plD
*
grid
.
fft_ir_squared
)
field
=
np
.
fft
.
ifft2
(
field
)
return
field
def
FFT_scale_propagate
(
field
,
grid0
,
grid1
,
Lambda
,
distance
,
w0
,
w1
,
nr
):
# FFT propagation code with an adaptive grid size.
# Propagates to a scaled coordinate system, see Virgo Book of
# Physics pages 179-184, the scaling factor is given
# as w1/w0 with w0 the beam size at the start of propagation
# and w1 the expected beam size at the end of propatation.
# NOT YET TESTED
k
=
2.0
*
np
.
pi
/
Lambda
*
nr
plD
=
np
.
pi
*
Lambda
*
distance
*
w0
/
w1
/
nr
z0
=
distance
/
(
w1
/
w0
-
1.0
)
# initial scaling
field
=
field
*
np
.
exp
(
-
1j
*
k
*
grid0
.
r_squared
/
(
2.0
*
z0
))
field
=
np
.
fft
.
fft2
(
field
)
# scaled propagator
field
=
field
*
np
.
exp
(
-
1j
*
k
*
distance
)
*
np
.
exp
(
1j
*
plD
*
grid0
.
fft_ir_squared
)
field
=
np
.
fft
.
ifft2
(
field
)
# final scaling
field
=
field
*
w0
/
w1
*
np
.
exp
(
1j
*
grid1
.
r_squared
*
(
z0
+
L
)
/
(
2.0
*
z0
*
z0
))
return
field
class
grid
():
# Data structure to describe the size and axes for a (x,y) data array
# of complex beam amplitudes. Also contain also data structures for
# FFT propagation
def
__init__
(
self
,
xpoints
,
ypoints
,
xsize
,
ysize
,
xoffset
,
yoffset
):
self
.
xpoints
=
xpoints
self
.
ypoints
=
ypoints
self
.
xsize
=
xsize
self
.
ysize
=
ysize
self
.
xoffset
=
xoffset
self
.
yoffset
=
yoffset
# compute x and y axis
self
.
xstep
=
self
.
xsize
/
self
.
xpoints
self
.
ystep
=
self
.
ysize
/
self
.
ypoints
xvector
=
np
.
arange
(
self
.
xpoints
)
yvector
=
np
.
arange
(
self
.
ypoints
)
self
.
xaxis
=-
self
.
xsize
/
2.0
+
self
.
xstep
/
2.0
+
xvector
*
self
.
xstep
+
self
.
xoffset
self
.
yaxis
=-
self
.
ysize
/
2.0
+
self
.
ystep
/
2.0
+
yvector
*
self
.
ystep
+
self
.
yoffset
# and some useful variables based on the axis
self
.
X
,
self
.
Y
=
np
.
meshgrid
(
self
.
xaxis
,
self
.
yaxis
)
self
.
r_squared
=
(
self
.
X
)
**
2
+
(
self
.
Y
)
**
2
self
.
r
=
np
.
sqrt
(
self
.
r_squared
)
self
.
angle
=
np
.
arctan2
(
self
.
Y
,
self
.
X
)
# compute frequency axis
self
.
xaxis_fft
=
np
.
fft
.
fftshift
(
np
.
fft
.
fftfreq
(
self
.
xpoints
))
/
self
.
xstep
self
.
yaxis_fft
=
np
.
fft
.
fftshift
(
np
.
fft
.
fftfreq
(
self
.
ypoints
))
/
self
.
ystep
# some useful variables based on the frequency axis
self
.
fft_X
,
self
.
fft_Y
=
np
.
meshgrid
(
self
.
xaxis_fft
,
self
.
yaxis_fft
)
self
.
fft_ir_squared
=
np
.
fft
.
ifftshift
((
self
.
fft_X
)
**
2
+
(
self
.
fft_Y
)
**
2
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment