Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
hierarchical-bayesian-models
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Rutger van Haasteren
hierarchical-bayesian-models
Commits
18eeaf21
Commit
18eeaf21
authored
1 year ago
by
Rutger van Haasteren
Browse files
Options
Downloads
Patches
Plain Diff
Sped up the prior by 30x
parent
304d84ed
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
prior_wrapper.py
+26
-11
26 additions, 11 deletions
prior_wrapper.py
with
26 additions
and
11 deletions
prior_wrapper.py
+
26
−
11
View file @
18eeaf21
...
@@ -361,7 +361,10 @@ class BoundedMvNormalPlHierarchicalPrior(object):
...
@@ -361,7 +361,10 @@ class BoundedMvNormalPlHierarchicalPrior(object):
amps
=
p
[
self
.
_la_inds
]
amps
=
p
[
self
.
_la_inds
]
gammas
=
p
[
self
.
_g_inds
]
gammas
=
p
[
self
.
_g_inds
]
pag
=
np
.
vstack
([
amps
,
gammas
])
pag
=
np
.
vstack
([
amps
,
gammas
])
try
:
uag
=
sl
.
solve_triangular
(
L
,
pag
-
mu
[:,
None
],
trans
=
0
,
lower
=
True
)
uag
=
sl
.
solve_triangular
(
L
,
pag
-
mu
[:,
None
],
trans
=
0
,
lower
=
True
)
except
sl
.
LinAlgError
as
e
:
return
-
np
.
inf
quad
=
-
0.5
*
np
.
sum
(
uag
**
2
,
axis
=
0
)
quad
=
-
0.5
*
np
.
sum
(
uag
**
2
,
axis
=
0
)
norm
=
-
np
.
sum
(
np
.
log
(
np
.
diag
(
L
)))
-
np
.
log
(
2
*
np
.
pi
)
norm
=
-
np
.
sum
(
np
.
log
(
np
.
diag
(
L
)))
-
np
.
log
(
2
*
np
.
pi
)
...
@@ -406,7 +409,10 @@ class BoundedMvNormalPlHierarchicalPrior(object):
...
@@ -406,7 +409,10 @@ class BoundedMvNormalPlHierarchicalPrior(object):
amps
=
qp
[
self
.
_la_inds
]
amps
=
qp
[
self
.
_la_inds
]
gammas
=
qp
[
self
.
_g_inds
]
gammas
=
qp
[
self
.
_g_inds
]
pag
=
np
.
vstack
([
amps
,
gammas
])
pag
=
np
.
vstack
([
amps
,
gammas
])
try
:
uag
=
sl
.
solve_triangular
(
L
,
pag
-
mu
[:,
None
],
trans
=
0
,
lower
=
True
)
uag
=
sl
.
solve_triangular
(
L
,
pag
-
mu
[:,
None
],
trans
=
0
,
lower
=
True
)
except
sl
.
LinAlgError
as
e
:
return
x
,
0
# Draw a random element from uag to update
# Draw a random element from uag to update
n_total
=
np
.
prod
(
uag
.
shape
)
n_total
=
np
.
prod
(
uag
.
shape
)
...
@@ -518,6 +524,7 @@ class BoundedTwoComponentMvNormalPlHierarchicalPrior(BoundedMvNormalPlHierarchic
...
@@ -518,6 +524,7 @@ class BoundedTwoComponentMvNormalPlHierarchicalPrior(BoundedMvNormalPlHierarchic
pag
=
np
.
vstack
([
amps
,
gammas
])
pag
=
np
.
vstack
([
amps
,
gammas
])
# Mode 1 & 2 Gaussian components
# Mode 1 & 2 Gaussian components
try
:
uag1
=
sl
.
solve_triangular
(
L1
,
pag
-
mu1
[:,
None
],
trans
=
0
,
lower
=
True
)
uag1
=
sl
.
solve_triangular
(
L1
,
pag
-
mu1
[:,
None
],
trans
=
0
,
lower
=
True
)
quad1
=
-
0.5
*
np
.
sum
(
uag1
**
2
,
axis
=
0
)
quad1
=
-
0.5
*
np
.
sum
(
uag1
**
2
,
axis
=
0
)
norm1
=
-
np
.
sum
(
np
.
log
(
np
.
diag
(
L1
)))
-
np
.
log
(
2
*
np
.
pi
)
norm1
=
-
np
.
sum
(
np
.
log
(
np
.
diag
(
L1
)))
-
np
.
log
(
2
*
np
.
pi
)
...
@@ -526,6 +533,8 @@ class BoundedTwoComponentMvNormalPlHierarchicalPrior(BoundedMvNormalPlHierarchic
...
@@ -526,6 +533,8 @@ class BoundedTwoComponentMvNormalPlHierarchicalPrior(BoundedMvNormalPlHierarchic
norm2
=
-
np
.
sum
(
np
.
log
(
np
.
diag
(
L2
)))
-
np
.
log
(
2
*
np
.
pi
)
norm2
=
-
np
.
sum
(
np
.
log
(
np
.
diag
(
L2
)))
-
np
.
log
(
2
*
np
.
pi
)
log_prior1
=
np
.
sum
(
quad1
+
norm1
)
log_prior1
=
np
.
sum
(
quad1
+
norm1
)
log_prior2
=
np
.
sum
(
quad2
+
norm2
)
log_prior2
=
np
.
sum
(
quad2
+
norm2
)
except
sl
.
LinAlgError
as
e
:
return
-
np
.
inf
log_prior
=
log_weighted_sum_exp
(
log_prior1
,
log_prior2
,
CF
)
log_prior
=
log_weighted_sum_exp
(
log_prior1
,
log_prior2
,
CF
)
log_jacobian
=
self
.
log_dpdx
(
x
)
log_jacobian
=
self
.
log_dpdx
(
x
)
...
@@ -569,6 +578,11 @@ class EnterpriseWrapper(object):
...
@@ -569,6 +578,11 @@ class EnterpriseWrapper(object):
self
.
_ndim
=
self
.
_ndim_level1
+
self
.
_ndim_level2
self
.
_ndim
=
self
.
_ndim_level1
+
self
.
_ndim_level2
self
.
_ptapar_to_array
,
self
.
_array_to_ptapar
=
ptapar_mapping
(
self
.
_pta
)
self
.
_ptapar_to_array
,
self
.
_array_to_ptapar
=
ptapar_mapping
(
self
.
_pta
)
# Initialize all the Enterprise prior distributions for efficiency
self
.
_nohbm_indices
=
self
.
get_nohbm_indices
()
nohbm_parameter_indices
=
list
(
set
(
self
.
_array_to_ptapar
[
self
.
_nohbm_indices
]))
self
.
_nohbm_parameters
=
[
self
.
_pta
.
params
[
pp
]
for
pp
in
nohbm_parameter_indices
]
@property
@property
def
param_names
(
self
):
def
param_names
(
self
):
"""
All parameter names of whole HBM
"""
"""
All parameter names of whole HBM
"""
...
@@ -629,7 +643,8 @@ class EnterpriseWrapper(object):
...
@@ -629,7 +643,8 @@ class EnterpriseWrapper(object):
def
log_prior
(
self
,
x
):
def
log_prior
(
self
,
x
):
"""
Full hierarchical log-prior
"""
"""
Full hierarchical log-prior
"""
logp
=
np
.
sum
([
self
.
_pta
.
params
[
self
.
_array_to_ptapar
[
ii
]].
get_logpdf
(
x
[
ii
])
for
ii
in
self
.
get_nohbm_indices
()])
params
=
self
.
_pta
.
map_params
(
self
.
get_low_level_pars
(
x
))
logp
=
np
.
sum
([
p
.
get_logpdf
(
params
=
params
)
for
p
in
self
.
_nohbm_parameters
])
for
prior
in
self
.
hyper_priors
:
for
prior
in
self
.
hyper_priors
:
logp
+=
prior
.
log_prior
(
x
)
logp
+=
prior
.
log_prior
(
x
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment