Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RDStackingProject
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Xisco Jimenez Forteza
RDStackingProject
Commits
d550b071
Commit
d550b071
authored
4 years ago
by
Francisco Jimenez Forteza
Browse files
Options
Downloads
Patches
Plain Diff
fixed bugs on QNM_Berti function in rdown.py
parent
599c6566
No related branches found
No related tags found
No related merge requests found
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
code_new/Sumit/RD_Fits.ipynb
+71
-88
71 additions, 88 deletions
code_new/Sumit/RD_Fits.ipynb
code_new/Sumit/RD_Fits.py
+397
-0
397 additions, 0 deletions
code_new/Sumit/RD_Fits.py
code_new/Sumit/read_data.py
+4
-4
4 additions, 4 deletions
code_new/Sumit/read_data.py
with
472 additions
and
92 deletions
code_new/Sumit/RD_Fits.ipynb
+
71
−
88
View file @
d550b071
Source diff could not be displayed: it is too large. Options to address this:
view the blob
.
This diff is collapsed.
Click to expand it.
code_new/Sumit/RD_Fits.py
0 → 100755
+
397
−
0
View file @
d550b071
#!/usr/bin/env python
# coding: utf-8
# In[1]:
"""
Generate ringdown templates in the time and perform parameter estimation on them.
"""
# In[1]:
#Import relevant modules, import data and all that
import
time
import
numpy
as
np
import
corner
import
matplotlib.pyplot
as
plt
from
matplotlib.ticker
import
MaxNLocator
from
matplotlib
import
rc
from
configparser
import
ConfigParser
plt
.
rcParams
.
update
({
'
font.size
'
:
16.5
})
from
multiprocessing
import
Pool
import
random
import
dynesty
from
dynesty
import
plotting
as
dyplot
from
dynesty.utils
import
resample_equal
from
dynesty
import
utils
as
dyfunc
import
os
import
argparse
import
scipy.optimize
as
optimization
from
scipy.optimize
import
minimize
import
rdown
as
rd
import
rdown_pe
as
rd_pe
import
rdown_utilities
as
rd_ut
import
read_data
as
rdata
# In[2]:
## Loading and running data tested with NR data
## Loading and running data tested with Mock data
# In[3]:
# Cell that calls the arguments from your 'config.ini' file.
try
:
parser
=
argparse
.
ArgumentParser
(
description
=
"
Simple argument parser
"
)
parser
.
add_argument
(
"
-c
"
,
action
=
"
store
"
,
dest
=
"
config_file
"
)
result
=
parser
.
parse_args
()
config_file
=
result
.
config_file
parser
=
ConfigParser
()
parser
.
read
(
config_file
)
parser
.
sections
()
except
SystemExit
:
parser
=
ConfigParser
()
parser
.
read
(
'
config_fixed_n6_m_af.ini
'
)
parser
.
sections
()
pass
# In[4]:
# Load variables from config file
(
rootpath
,
simulation_path_1
,
simulation_path_2
,
metadata_file
,
simulation_number
,
output_folder
,
export
,
overwrite
,
sampler
,
nr_code
,
nbcores
,
tshift
,
tend
,
t_align
,
nmax
,
npoints
,
model
,
error_str
,
fitnoise
,
l_int
,
index_mass
,
index_spin
,
error_type
,
error_val
,
af
,
mf
,
tau_var_str
,
nm_mock
)
=
rdata
.
read_config_file
(
parser
)
# In[5]:
# Show configuration options
dim
=
nmax
+
1
ndim
=
4
*
dim
numbins
=
32
#corner plot parameter - how many bins you want
print
(
'
model:
'
,
model
)
print
(
'
nmax:
'
,
nmax
)
print
(
'
nm_mock:
'
,
nm_mock
)
print
(
'
tshift:
'
,
tshift
)
print
(
'
error:
'
,
error_str
)
print
(
'
error value:
'
,
error_val
)
print
(
'
export:
'
,
export
)
print
(
'
nr code:
'
,
nr_code
)
print
(
'
fit noise:
'
,
fitnoise
)
# In[6]:
# Create output directories
if
not
os
.
path
.
exists
(
output_folder
):
os
.
mkdir
(
output_folder
)
print
(
"
Directory
"
,
output_folder
,
"
Created
"
)
if
nr_code
==
'
Mock-data
'
:
nm_mock_str
=
'
rec_with
'
+
parser
.
get
(
'
rd-mock-parameters
'
,
'
nm_mock
'
)
+
'
_
'
else
:
nm_mock_str
=
''
if
error_str
:
output_folder_1
=
(
output_folder
+
'
/
'
+
model
+
'
-nmax
'
+
str
(
nmax
)
+
'
_
'
+
nm_mock_str
+
str
(
error_str
)
+
'
_
'
+
str
(
error_type
)
+
'
_fitnoise_
'
+
str
(
fitnoise
))
else
:
output_folder_1
=
output_folder
+
'
/
'
+
model
+
'
-nmax
'
+
str
(
nmax
)
+
'
_
'
+
nm_mock_str
+
str
(
error_str
)
+
'
_
'
+
'
fitnoise_
'
+
str
(
fitnoise
)
if
not
os
.
path
.
exists
(
output_folder_1
):
os
.
mkdir
(
output_folder_1
)
print
(
"
Directory
"
,
output_folder_1
,
"
Created
"
)
# In[7]:
# Define output files
pars
=
[
simulation_number
,
model
,
nmax
,
tshift
,
npoints
]
corner_plot
=
rdata
.
create_output_files
(
output_folder_1
,
pars
,
'
corner_plot
'
)
corner_plot_extra
=
rdata
.
create_output_files
(
output_folder_1
,
pars
,
'
corner_plot_extra
'
)
diagnosis_plot
=
rdata
.
create_output_files
(
output_folder_1
,
pars
,
'
diagnosis
'
)
fit_plot
=
rdata
.
create_output_files
(
output_folder_1
,
pars
,
'
fit
'
)
samples_file
=
rdata
.
create_output_files
(
output_folder_1
,
pars
,
'
post_samples
'
)
results_file
=
rdata
.
create_output_files
(
output_folder_1
,
pars
,
'
sampler_results
'
)
sumary_data
=
rdata
.
create_output_files
(
output_folder_1
,
pars
,
'
log_z
'
)
best_data
=
rdata
.
create_output_files
(
output_folder_1
,
pars
,
'
best_vals
'
)
files
=
[
corner_plot
,
corner_plot_extra
,
diagnosis_plot
,
fit_plot
,
samples_file
,
results_file
,
sumary_data
,
best_data
]
# In[8]:
# Remove old files if overwrite = True
if
overwrite
:
rd_ut
.
rm_files
(
files
)
# In[9]:
#Load NR data, align in time and resize. Plot real part and amplitude. Finally compute the mismatch and the snr estimate
data
=
rdata
.
read_data
(
nr_code
,
simulation_path_1
,
RD
=
True
,
tshift
=
tshift
,
tend
=
tend
,
metadata_file
=
metadata_file
,
parser
=
parser
)
data_l
=
rdata
.
read_data
(
nr_code
,
simulation_path_2
,
RD
=
True
,
tshift
=
tshift
,
tend
=
tend
,
metadata_file
=
metadata_file
,
parser
=
parser
)
data_r
,
data_lr
=
rdata
.
nr_resize
(
data
,
data_l
,
tshift
=
tshift
,
tend
=
tend
)
times_rd
=
data_r
[:,
0
]
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
times_rd
,
data_r
[:,
1
].
real
,
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev6$: real
'
)
plt
.
plot
(
times_rd
,
np
.
sqrt
((
data_r
[:,
1
].
real
)
**
2
+
(
data_r
[:,
1
].
imag
)
**
2
),
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5\,amp$
'
)
plt
.
plot
(
times_rd
,
data_lr
[:,
1
].
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5: real$
'
)
plt
.
plot
(
times_rd
,
np
.
sqrt
((
data_lr
[:,
1
].
real
)
**
2
+
(
data_lr
[:,
1
].
imag
)
**
2
),
"
b
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5\,amp$
'
)
if
error_str
and
error_val
==
0
:
error
=
np
.
sqrt
(
data_r
[:,
1
]
*
data_r
[:,
1
]
-
2
*
data_r
[:,
1
]
*
data_lr
[:,
1
]
+
data_lr
[:,
1
]
*
data_lr
[:,
1
])
error_est
=
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
)
plt
.
plot
(
times_rd
,
error_est
,
"
g
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error
'
)
plt
.
legend
()
mismatch
=
1
-
rd_ut
.
EasyMatchT
(
times_rd
,
data_r
[:,
1
],
data_lr
[:,
1
],
tshift
,
tend
)
error
=
np
.
sqrt
(
2
*
mismatch
)
print
(
'
error estimate:
'
,
error
)
print
(
'
mismatch:
'
,
mismatch
)
print
(
'
snr:
'
,
rd_ut
.
EasySNRT
(
times_rd
,
data_r
[:,
1
],
data_lr
[:,
1
],
tshift
,
tend
)
/
error
**
2
)
# In[10]:
# Phase alignement
if
parser
.
has_option
(
'
rd-model
'
,
'
phase_alignment
'
):
phase_alignment
=
eval
(
parser
.
get
(
'
rd-model
'
,
'
phase_alignment
'
))
else
:
phase_alignment
=
False
if
phase_alignment
:
datar_al
=
rdata
.
phase_align
(
data_r
,
data_lr
)
gwdatanew5
=
data_lr
[:,
1
]
gwdatanew
=
datar_al
[:,
1
]
timesrd_final
=
datar_al
[:,
0
]
mismatch
=
1
-
rd_ut
.
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
tshift
,
tend
)
error
=
np
.
sqrt
(
2
*
mismatch
)
print
(
'
error estimate:
'
,
error
)
print
(
'
mismatch:
'
,
mismatch
)
print
(
'
snr:
'
,
rd_ut
.
EasySNRT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
tshift
,
tend
)
/
error
)
if
error_str
:
error
=
np
.
sqrt
(
gwdatanew
*
gwdatanew
-
2
*
gwdatanew
*
gwdatanew5
+
gwdatanew5
*
gwdatanew5
)
error_est
=
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
)
else
:
error
=
1
else
:
datar_al
=
data_r
timesrd_final
=
datar_al
[:,
0
]
#Test the new interpolated data
if
error_str
and
error_val
==
0
:
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd_final
,
datar_al
[:,
1
].
real
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Original
'
)
plt
.
plot
(
timesrd_final
,
data_lr
[:,
1
].
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Aligned
'
)
plt
.
plot
(
timesrd_final
,
error_est
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error
'
)
plt
.
legend
()
# In[11]:
# Define your noise depending on the noise configuration. Load priors and setup the likelihood with rd_pe.Ringdown_PE.
if
error_str
and
error_val
==
0
:
error_final
=
error_est
norm_factor
=
100
*
len
(
error_final
)
/
2
*
np
.
log
(
2
*
np
.
pi
)
elif
error_str
and
error_val
!=
0
:
datar_al
[:,
1
]
+=
random
.
uniform
(
0
,
error_val
)
datar_al
[:,
1
]
+=
1j
*
random
.
uniform
(
0
,
error_val
)
error_tsh
=
error_val
error_final
=
(
error_tsh
.
real
**
2
+
error_tsh
.
imag
**
2
)
norm_factor
=
0
else
:
error_tsh
=
1
error_final
=
(
error_tsh
.
real
**
2
+
error_tsh
.
imag
**
2
)
norm_factor
=
0
if
parser
.
has_option
(
'
setup
'
,
'
qnm_model
'
):
qnm_model
=
'
berti
'
rdownfolders
=
np
.
asarray
([
rootpath
+
'
/RDmodes/l2/n
'
+
str
(
i
+
1
)
+
'
l2m2.dat
'
for
i
in
range
(
nmax
+
1
)])
rdowndata
=
np
.
asarray
([
np
.
loadtxt
(
rdownfolders
[
i
]).
T
for
i
in
range
(
len
(
rdownfolders
))])
else
:
qnm_model
=
'
qnm
'
priors
=
rd_pe
.
load_priors
(
model
,
parser
,
nmax
,
fitnoise
=
fitnoise
)
rdown
=
rd
.
Ringdown_Spectrum
(
mf
,
af
,
2
,
2
,
n
=
nmax
,
s
=-
2
,
time
=
timesrd_final
,
rdowndata
=
rdowndata
)
rdown_pe
=
rd_pe
.
Ringdown_PE
(
rdown
,
datar_al
,
dim
,
priors
,
errors2
=
error_final
,
norm_factor
=
norm_factor
,
model
=
model
,
l_int
=
l_int
)
# In[13]:
# Get a first estimate by trying to fit the data.
nll
=
lambda
*
args
:
-
rdown_pe
.
log_likelihood
(
*
args
)
if
model
==
'
w-tau-fixed-m-af
'
:
if
fitnoise
:
initial
=
np
.
concatenate
((
np
.
ones
(
2
*
dim
),[
0.8
,
0.9
,
1
]))
soln
=
minimize
(
nll
,
initial
,
bounds
=
priors
)
vars_ml
=
soln
.
x
else
:
initial
=
np
.
concatenate
((
np
.
ones
(
2
*
dim
),[
0.8
,
0.9
]))
soln
=
minimize
(
nll
,
initial
,
bounds
=
priors
)
vars_ml
=
soln
.
x
elif
model
==
'
w-tau-fixed
'
:
if
fitnoise
:
initial
=
np
.
concatenate
((
np
.
ones
(
2
*
dim
),[
0.2
]))
soln
=
minimize
(
nll
,
initial
,
bounds
=
priors
)
vars_ml
=
soln
.
x
else
:
initial
=
np
.
ones
(
2
*
dim
)
soln
=
minimize
(
nll
,
initial
,
bounds
=
priors
)
vars_ml
=
soln
.
x
else
:
if
fitnoise
:
initial
=
np
.
concatenate
((
np
.
ones
(
ndim
),[
1
]))
soln
=
minimize
(
nll
,
initial
,
bounds
=
priors
)
vars_ml
=
soln
.
x
else
:
initial
=
np
.
ones
(
ndim
)
soln
=
minimize
(
nll
,
initial
,
bounds
=
priors
)
vars_ml
=
soln
.
x
print
(
"
best fit pars from fit:
"
,
vars_ml
)
# In[ ]:
mypool
=
Pool
(
nbcores
)
mypool
.
size
=
nbcores
start
=
time
.
process_time
()
f2
=
dynesty
.
NestedSampler
(
rdown_pe
.
log_likelihood
,
rdown_pe
.
prior_transform
,
len
(
priors
),
nlive
=
npoints
,
sample
=
sampler
,
pool
=
mypool
)
if
parser
.
has_option
(
'
setup
'
,
'
dlogz
'
):
dlogz
=
np
.
float
(
parser
.
get
(
'
setup
'
,
'
dlogz
'
))
f2
.
run_nested
(
dlogz
=
dlogz
,
print_progress
=
False
)
else
:
f2
.
run_nested
(
print_progress
=
False
)
print
(
time
.
process_time
()
-
start
)
# In[52]:
res
=
f2
.
results
res
.
samples_u
.
shape
res
.
summary
()
samps
=
f2
.
results
.
samples
postsamps
=
rd_ut
.
posterior_samples
(
f2
)
samps_tr
=
np
.
transpose
(
samps
)
half_points
=
int
(
round
((
len
(
samps_tr
[
0
])
/
1.25
)))
evidence
=
res
.
logz
[
-
1
]
evidence_error
=
res
.
logzerr
[
-
1
]
if
export
:
rd_ut
.
save_object
(
res
,
results_file
)
# In[53]:
pars
=
nmax
,
model
,
samps_tr
,
half_points
npamps
=
rd_ut
.
get_best_amps
(
pars
,
parser
=
parser
,
nr_code
=
nr_code
)
# In[54]:
if
export
:
pars
=
simulation_number
,
nmax
,
tshift
,
evidence
,
evidence_error
rd_ut
.
export_logz_files
(
sumary_data
,
pars
)
# In[55]:
labels
=
rd_ut
.
define_labels
(
dim
,
model
,
fitnoise
)
if
export
:
pars
=
tshift
,
len
(
priors
),
labels
rd_ut
.
export_bestvals_files
(
best_data
,
postsamps
,
pars
)
# In[56]:
w
,
tau
=
rdown
.
QNM_spectrum
()
pars
=
w
,
tau
,
mf
,
af
,
npamps
truths
=
rd_ut
.
get_truths
(
model
,
pars
,
fitnoise
)
# In[57]:
fg
=
corner
.
corner
(
postsamps
,
quantiles
=
[
0.05
,
0.5
,
0.95
],
show_titles
=
True
,
max_n_ticks
=
4
,
bins
=
50
,
truths
=
truths
,
labels
=
labels
,
truth_color
=
'
red
'
)
plt
.
show
()
if
export
:
fg
.
savefig
(
corner_plot
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
)
# In[58]:
from
importlib
import
reload
reload
(
rd_ut
)
if
model
==
'
w-tau-fixed-m-af
'
and
export
==
True
:
truths
=
np
.
concatenate
((
w
,
tau
))
labels_mf
=
np
.
concatenate
((
w_lab
,
tau_lab
))
new_samples
=
rd_ut
.
convert_m_af_2_w_tau_post
(
res
,
fitnoise
=
False
)
figure
=
corner
.
corner
(
new_samples
,
truths
=
truths
,
quantiles
=
[
0.05
,
0.95
],
labels
=
labels_mf
,
smooth
=
True
,
color
=
'
b
'
,
truth_color
=
'
r
'
,
show_titles
=
True
)
figure
.
savefig
(
corner_plot_extra
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
)
# In[151]:
#lnz_truth = ndim * -np.log(2 * 10.) # analytic evidence solution
fig
,
axes
=
dyplot
.
runplot
(
res
)
fig
.
tight_layout
()
if
export
:
fig
.
savefig
(
diagnosis_plot
,
format
=
'
png
'
,
dpi
=
384
,
bbox_inches
=
'
tight
'
)
# In[166]:
if
export
:
dict
=
{
'
w-tau
'
:
rdown
.
rd_model_wtau
,
'
w-q
'
:
rdown
.
rd_model_wq
,
'
w-tau-fixed
'
:
rdown
.
rd_model_wtau_fixed
,
'
w-tau-fixed-m-af
'
:
rdown
.
rd_model_wtau_m_af
}
figband
=
plt
.
figure
(
figsize
=
(
12
,
9
))
plt
.
plot
(
datar_al
[:,
0
].
real
,
datar_al
[:,
1
].
real
,
"
green
"
,
alpha
=
0.9
,
lw
=
3
,
label
=
r
'
$res_{240}$
'
)
onesig_bounds
=
np
.
array
([
np
.
percentile
(
postsamps
[:,
i
],
[
5
,
95
])
for
i
in
range
(
len
(
postsamps
[
0
]))]).
T
samples_1sigma
=
filter
(
lambda
sample
:
np
.
all
(
onesig_bounds
[
0
]
<=
sample
)
and
np
.
all
(
sample
<=
onesig_bounds
[
1
]),
postsamps
)
samples_1sigma_down
=
list
(
samples_1sigma
)[::
downfactor
]
for
sample
in
samples_1sigma_down
:
plt
.
plot
(
datar_al
[:,
0
].
real
,
dict
[
model
](
sample
).
real
,
"
r-
"
,
alpha
=
0.1
,
lw
=
1
)
plt
.
title
(
r
'
Comparison of the MC fit data and the $1-\sigma$ error band
'
)
plt
.
legend
()
plt
.
xlabel
(
'
t
'
)
plt
.
ylabel
(
'
h
'
)
plt
.
show
()
figband
.
savefig
(
fit_plot
)
# In[162]:
if
export
:
with
open
(
samples_file
,
'
w
'
)
as
file
:
writer
=
csv
.
writer
(
file
)
writer
.
writerow
(
labels
)
writer
.
writerows
(
samps
[::
downfactor
])
This diff is collapsed.
Click to expand it.
code_new/Sumit/read_data.py
+
4
−
4
View file @
d550b071
...
...
@@ -226,11 +226,11 @@ def create_output_files(output_folder,pars,file_type):
"""
if
file_type
==
'
corner_plot
'
:
outfile
=
output_folder
+
'
/Dynesty_
'
+
str
(
sim_num
)
+
'
_
'
+
model
+
'
_nmax
=
'
+
str
(
nmax
)
+
'
_tshift
=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot.png
'
outfile
=
output_folder
+
'
/Dynesty_
'
+
str
(
sim_num
)
+
'
_
'
+
model
+
'
_nmax
_
'
+
str
(
nmax
)
+
'
_tshift
_
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot.png
'
elif
file_type
==
'
corner_plot_extra
'
:
outfile
=
output_folder
+
'
/Dynesty_
'
+
str
(
sim_num
)
+
'
_
'
+
model
+
'
_nmax
=
'
+
str
(
nmax
)
+
'
_tshift
=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot_extra.png
'
outfile
=
output_folder
+
'
/Dynesty_
'
+
str
(
sim_num
)
+
'
_
'
+
model
+
'
_nmax
_
'
+
str
(
nmax
)
+
'
_tshift
_
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot_extra.png
'
elif
file_type
==
'
diagnosis
'
:
outfile
=
output_folder
+
'
/Dynesty_diagnosis
'
+
str
(
sim_num
)
+
'
_
'
+
model
+
'
_nmax
=
'
+
str
(
nmax
)
+
'
_tshift
=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
.png
'
outfile
=
output_folder
+
'
/Dynesty_diagnosis
'
+
str
(
sim_num
)
+
'
_
'
+
model
+
'
_nmax
_
'
+
str
(
nmax
)
+
'
_tshift
_
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
.png
'
elif
file_type
==
'
fit
'
:
outfile
=
output_folder
+
'
/Fit_results_
'
+
str
(
sim_num
)
+
'
tshift_
'
+
str
(
tshift
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.png
'
elif
file_type
==
'
post_samples
'
:
...
...
@@ -340,5 +340,5 @@ def read_config_file(parser):
else
:
nm_mock
=
None
res
=
simulation_path_1
,
simulation_path_2
,
metadata_file
,
simulation_number
,
output_folder
,
export
,
overwrite
,
sampler
,
nr_code
,
nbcores
,
tshift
,
tend
,
t_align
,
nmax
,
npoints
,
model
,
error_str
,
fitnoise
,
l_int
,
index_mass
,
index_spin
,
error_type
,
error_val
,
af
,
mf
,
tau_var_str
,
nm_mock
res
=
rootpath
,
simulation_path_1
,
simulation_path_2
,
metadata_file
,
simulation_number
,
output_folder
,
export
,
overwrite
,
sampler
,
nr_code
,
nbcores
,
tshift
,
tend
,
t_align
,
nmax
,
npoints
,
model
,
error_str
,
fitnoise
,
l_int
,
index_mass
,
index_spin
,
error_type
,
error_val
,
af
,
mf
,
tau_var_str
,
nm_mock
return
res
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment