Skip to content
Snippets Groups Projects
Commit 02cd2c40 authored by frcojimenez's avatar frcojimenez
Browse files

python notebook

parent be18f078
No related branches found
No related tags found
No related merge requests found
......@@ -82,7 +82,7 @@ try:
parser.sections()
except SystemExit:
parser = ConfigParser()
parser.read('config_n2_q10.ini')
parser.read('config_fixed_n1_m_af.ini')
parser.sections()
pass
......@@ -331,26 +331,26 @@ def QNM_Berti(mf,af,l,m):
tau_ma_a=[None]*(nmax+1)
for i in range(nmax+1):
qnm=rdowndata[0,1:3,position]
qnm=rdowndata[i,1:3,position]
w_m_a[i] = qnm[0]/mf
tau_ma_a[i] = -1/(qnm[1])*mf
return w_m_a, tau_ma_a
# In[14]:
# In[15]:
np.sqrt(12/2*1/tauRD_to_t_NR(1.3*10**-47,70)*(5*10**(-21))**2)
# In[15]:
# In[16]:
np.sqrt(0.004/2*1/(1.3*10**-47)*(5*10**(-21))**2)
# In[16]:
# In[17]:
gw = {}
......@@ -406,7 +406,7 @@ elif nr_code=='LaZeV':
times=times_1
# In[17]:
# In[18]:
if nr_code=='SXS':
......@@ -436,7 +436,7 @@ tmax5=FindTmaximum(gw5_sxs_bbh_0305[round(len(gw_sxs_bbh_0305)/2):])
times5 = times5 - tmax5
# In[18]:
# In[19]:
if parser.has_option('setup','qnm_model'):
......@@ -449,7 +449,7 @@ else:
w , tau = QNM_spectrum(mf,af,2,2)
# In[19]:
# In[20]:
# loading priors
......@@ -509,7 +509,7 @@ elif model == 'w-tau-fixed-m-af':
priors=np.column_stack((priors_min,priors_max))
# In[20]:
# In[21]:
#Select the data from 0 onwards
......@@ -521,7 +521,7 @@ timesrd=gw_sxs_bbh_0305[position:-1][:,0][:]-tmax
timesrd5=gw5_sxs_bbh_0305[position5:-1][:,0][:]-tmax5
# In[21]:
# In[22]:
#Test plot real part (data was picked in the last cell). Aligning in time
......@@ -533,13 +533,13 @@ plt.plot(timesrd5, np.sqrt(gw_sxs_bbh_0305rd5[:,1]**2+gw_sxs_bbh_0305rd5[:,2]**2
plt.legend()
# In[22]:
# In[23]:
#[plt.errorbar(csv_data_fixed[i]['t_shift'], -csv_data_fixed[i]['dlogz'], yerr=csv_data_fixed[i]['dlogz_err'], fmt='o',color=colors[i],label =tags_fixed[i]) for i in range(len(csv_data_fixed))]
# In[23]:
# In[24]:
gwnew_re = interpolate.interp1d(timesrd, gw_sxs_bbh_0305rd[:,1], kind = 'cubic')
......@@ -549,7 +549,7 @@ gwnew_re5 = interpolate.interp1d(timesrd5, gw_sxs_bbh_0305rd5[:,1], kind = 'cubi
gwnew_im5 = interpolate.interp1d(timesrd5, gw_sxs_bbh_0305rd5[:,2], kind = 'cubic')
# In[24]:
# In[25]:
if timesrd5[-1]>= timesrd[-1]:
......@@ -566,7 +566,7 @@ gwdatanew = gwdatanew_re - 1j*gwdatanew_im
gwdatanew5 = gwdatanew_re5- 1j*gwdatanew_im5
# In[25]:
# In[26]:
#taus, corr= twopoint_autocovariance(timesrd,gwdatanew-gwdatanew5)
......@@ -578,7 +578,7 @@ gwdatanew5 = gwdatanew_re5- 1j*gwdatanew_im5
#taus[index]
# In[26]:
# In[27]:
mismatch=1-EasyMatchT(timesrd_final,gwdatanew,gwdatanew5,0,0+90)
......@@ -588,7 +588,7 @@ print('mismatch:', mismatch)
print('snr:', EasySNRT(timesrd_final,gwdatanew,gwdatanew,0,0+90)/error**2)
# In[27]:
# In[28]:
if error_str and error_val==0:
......@@ -601,7 +601,7 @@ if error_str and error_val==0:
plt.legend()
# In[28]:
# In[29]:
if parser.has_option('rd-model','phase_alignment'):
......@@ -610,7 +610,7 @@ else:
phase_alignment=False
# In[29]:
# In[30]:
# Phase alignement
......@@ -637,7 +637,7 @@ if phase_alignment:
EasySNRT(timesrd_final,gwdatanew,gwdatanew5/error,0,0+90)
# In[30]:
# In[31]:
#Test the new interpolated data
......@@ -649,7 +649,7 @@ if error_str and error_val==0:
plt.legend()
# In[31]:
# In[32]:
#Test the error data
......@@ -659,7 +659,7 @@ if error_str and error_val==0:
plt.legend()
# In[32]:
# In[33]:
#Test the error data
......@@ -671,7 +671,7 @@ if error_str and error_val==0:
plt.legend()
# In[33]:
# In[34]:
#Take the piece of waveform you want
......@@ -690,7 +690,7 @@ else:
error_tsh=1
# In[34]:
# In[35]:
......@@ -699,7 +699,7 @@ plt.xlabel(r'$t/M$')
plt.ylabel(r'$r \, h_+$')
# In[35]:
# In[36]:
#Fitting
......@@ -799,7 +799,7 @@ dict = {'w-tau': model_dv_tau , 'w-q': model_dv_q, 'w-tau-fixed': model_dv,'w-ta
dict_omega = {'berti': QNM_Berti , 'qnm': QNM_spectrum}
# In[36]:
# In[37]:
nll = lambda *args: -log_likelihood(*args)
......@@ -817,7 +817,7 @@ else:
vars_ml=soln.x
# In[37]:
# In[38]:
mypool = Pool(nbcores)
......@@ -1007,39 +1007,45 @@ fg, ax = dyplot.cornerplot(res, color='blue',
)
# In[52]:
# In[93]:
if not eval(overwrite):
fg.savefig(corner_plot, format = 'png', bbox_inches = 'tight')
if model == 'w-tau-fixed-m-af':
truths=np.concatenate((w,tau))
fmass_spin=(samps.T)[-2:].T
fmass_spin_dist=[None]*len(fmass_spin)
labels_mf = np.concatenate((w_lab,tau_lab))
for i in range(len(fmass_spin)):
fmass_spin_dist[i]=np.concatenate(dict_omega[qnm_model](fmass_spin[i,0],fmass_spin[i,1],2,2))
figure = corner.corner(fmass_spin_dist,truths=truths,quantiles=[0.05,0.95],labels=labels_mf,smooth=True,color='b',truth_color='r')
figure.savefig(corner_plot_extra, format = 'png', bbox_inches = 'tight')
# In[64]:
# In[94]:
from dynesty import plotting as dyplot
lnz_truth = ndim * -np.log(2 * 10.) # analytic evidence solution
fig, axes = dyplot.runplot(res, lnz_truth=lnz_truth)
fig.tight_layout()
# In[54]:
# In[95]:
if not eval(overwrite):
fig.savefig(diagnosis_plot, format = 'png', dpi = 384, bbox_inches = 'tight')
# In[55]:
# In[101]:
figband = plt.figure(figsize = (12, 9))
plt.plot(timesrd_final_tsh,gwdatanew_re_tsh, "green", alpha=0.9, lw=3, label=r'$res_{240}$')
plt.plot(timesrd_final_tsh,dict[model](vars_ml).real,'bo', alpha=0.9, lw=3, label=r'$fit$')
onesig_bounds = np.array([np.percentile(samps[:, i], [16, 84]) for i in range(len(samps[0]))]).T
onesig_bounds = np.array([np.percentile(samps[:, i], [5, 95]) for i in range(len(samps[0]))]).T
samples_1sigma = filter(lambda sample: np.all(onesig_bounds[0] <= sample) and np.all(sample <= onesig_bounds[1]), samps)
samples_1sigma_down = list(samples_1sigma)[::downfactor]
for sample in samples_1sigma_down:
......@@ -1051,14 +1057,14 @@ plt.ylabel('h')
plt.show()
# In[56]:
# In[99]:
if not eval(overwrite):
figband.savefig(fit_plot)
# In[57]:
# In[100]:
if not eval(overwrite):
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment