Skip to content
Snippets Groups Projects
Commit 33cc86a7 authored by Rayne Liu's avatar Rayne Liu
Browse files

Atlas probably should not run the waveform band plot together

parent e9d1bcbc
No related branches found
No related tags found
No related merge requests found
...@@ -42,12 +42,12 @@ tshift=10 ...@@ -42,12 +42,12 @@ tshift=10
vary_fund = True vary_fund = True
#sampler parameters #sampler parameters
npoints = 220 npoints = 400
nwalkers = 100 nwalkers = 240
ntemps=12 ntemps=12
dim = nmax+1 dim = nmax+1
ndim = 4*dim ndim = 4*dim
burnin = 150 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit. burnin = 280 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
#This is trivial but often forgotten: this cannot be more than npoints! I usually use half the points. #This is trivial but often forgotten: this cannot be more than npoints! I usually use half the points.
numbins = 32 #corner plot parameter - how many bins you want numbins = 32 #corner plot parameter - how many bins you want
datacolor = '#105670' #'#4fa3a7' datacolor = '#105670' #'#4fa3a7'
...@@ -155,7 +155,7 @@ def log_prior(theta): ...@@ -155,7 +155,7 @@ def log_prior(theta):
return 0.0 return 0.0
elif tshift == 10: elif tshift == 10:
if all([0.52 <= omega0 <= 0.64, 0.43 <= omega1 <= 0.58, 4. <= tau0 <= 18., 0. <= tau1 <= 10., \ if all([0.53 <= omega0 <= 0.66, 0.43 <= omega1 <= 0.58, 9. <= tau0 <= 15., 0. <= tau1 <= 5.8, \
0. <= xvar0 <= 1., 0. <= xvar1 <= 1.5, -np.pi <= yvar0 <= np.pi, -np.pi <= yvar1 <= np.pi]): 0. <= xvar0 <= 1., 0. <= xvar1 <= 1.5, -np.pi <= yvar0 <= np.pi, -np.pi <= yvar1 <= np.pi]):
return 0.0 return 0.0
...@@ -188,7 +188,7 @@ def log_probability(theta): ...@@ -188,7 +188,7 @@ def log_probability(theta):
#pool = choose_pool(1) #pool = choose_pool(1)
#pool.size = 1 #pool.size = 1
np.random.seed(42) np.random.seed(42)
pos = np.array([random.uniform(0.57,0.63), random.uniform(0.5,0.54), random.uniform(8., 13.7), random.uniform(4.,7.), random.uniform(0.3,0.5), random.uniform(0.3, 0.5), random.uniform(-1., 1.), random.uniform(-1., 1.)]) pos = np.array([random.uniform(0.59,0.64), random.uniform(0.5,0.54), random.uniform(10., 13.7), random.uniform(2.,5.), random.uniform(0.3,0.5), random.uniform(0.3, 0.5), random.uniform(-1., 1.), random.uniform(-1., 1.)])
pos = list(pos) pos = list(pos)
pos += 1e-5 * np.random.randn(ntemps, nwalkers, ndim) pos += 1e-5 * np.random.randn(ntemps, nwalkers, ndim)
with Pool() as pool: with Pool() as pool:
...@@ -265,7 +265,7 @@ for yi in range(naxes): ...@@ -265,7 +265,7 @@ for yi in range(naxes):
figcorn.savefig(rootpath + '/plotsmc/0001_10M_mockinterpolated_cornerplot_wandt_'+'nmax'+str(nmax)+'_tshift'+str(tshift)+'_'+str(nwalkers)+'walkers_'+str(npoints)+'pts.png', format='png', bbox_inches='tight', dpi=300) figcorn.savefig(rootpath + '/plotsmc/0001_10M_mockinterpolated_cornerplot_wandt_'+'nmax'+str(nmax)+'_tshift'+str(tshift)+'_'+str(nwalkers)+'walkers_'+str(npoints)+'pts.png', format='png', bbox_inches='tight', dpi=300)
"""
#Now plot the NR data against the mcmc fit data, together with the 1-sigma varying error data #Now plot the NR data against the mcmc fit data, together with the 1-sigma varying error data
onesig_bounds = np.array([np.percentile(samples[:, i], [16, 84]) for i in range(len(samples[0]))]).T onesig_bounds = np.array([np.percentile(samples[:, i], [16, 84]) for i in range(len(samples[0]))]).T
modelfitpk = model_dv(pk) modelfitpk = model_dv(pk)
...@@ -284,4 +284,4 @@ plt.xlabel("t") ...@@ -284,4 +284,4 @@ plt.xlabel("t")
plt.ylabel("h") plt.ylabel("h")
figband.savefig(rootpath + '/plotsmc/0001_10M_mockinterpolated_waveform_wandt_'+'nmax'+str(nmax)+'_tshift'+str(tshift)+'_'+str(nwalkers)+'walkers_'+str(npoints)+'pts.png', format = 'png', dpi = 384, bbox_inches = 'tight') figband.savefig(rootpath + '/plotsmc/0001_10M_mockinterpolated_waveform_wandt_'+'nmax'+str(nmax)+'_tshift'+str(tshift)+'_'+str(nwalkers)+'walkers_'+str(npoints)+'pts.png', format = 'png', dpi = 384, bbox_inches = 'tight')
"""
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment