Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RDStackingProject
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yifan Wang
RDStackingProject
Commits
3e1e34e0
Commit
3e1e34e0
authored
4 years ago
by
Rayne Liu
Browse files
Options
Downloads
Patches
Plain Diff
Let atlas test the stepsize
parent
f9995066
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
code/Is_it_inherent.py
+93
-0
93 additions, 0 deletions
code/Is_it_inherent.py
with
93 additions
and
0 deletions
code/Is_it_inherent.py
0 → 100644
+
93
−
0
View file @
3e1e34e0
"""
What happens if I increase the number density of points in the GW signal, for the n=1 mode fitting the n=1 data?
--Rayne Liu, 09/08/2020
"""
import
numpy
as
np
import
matplotlib.pyplot
as
plt
from
matplotlib
import
rc
plt
.
rcParams
.
update
({
'
font.size
'
:
19
})
import
dynesty
from
dynesty
import
plotting
as
dyplot
import
qnm
import
random
import
h5py
import
json
#This cell mimicks the (2, 2, 0) and (2, 2, 1) superposition, using the 0.01 stepsize
tstep
=
1
ndim
=
8
rootpath
=
"
/Users/RayneLiu/git/rdstackingproject
"
t
=
np
.
arange
(
0
,
80
,
tstep
)
w0
,
tau0
,
x0
,
y0
=
[
0.55578191
,
11.74090006
,
0.98213669
,
-
4.81250993
]
#Can get the w and tau from example nb and amplitude and phase from the 1910 paper
w1
,
tau1
,
x1
,
y1
=
[
0.54
,
3.88312743
,
4.29386867
,
-
0.79472571
]
print
(
'
The fundamental tone frequency, damping time, amplitude and phase:
'
)
print
(
w0
,
tau0
,
x0
,
y0
)
print
(
'
The n=1 overtone frequency, damping time, amplitude and phase:
'
)
print
(
w1
,
tau1
,
x1
,
y1
)
mockdata
=
x0
*
np
.
exp
(
1j
*
y0
)
*
np
.
exp
(
-
t
/
(
tau0
))
*
(
np
.
cos
(
w0
*
t
)
-
1j
*
np
.
sin
(
w0
*
t
))
+
\
x1
*
np
.
exp
(
1j
*
y1
)
*
np
.
exp
(
-
t
/
(
tau1
))
*
(
np
.
cos
(
w1
*
t
)
-
1j
*
np
.
sin
(
w1
*
t
))
print
(
'
The mock data:
'
)
figdata
=
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
t
,
mockdata
.
real
,
label
=
r
'
Real
'
)
plt
.
plot
(
t
,
mockdata
.
imag
,
label
=
r
'
Imag
'
)
plt
.
legend
()
#plt.show()
figdata
.
savefig
(
rootpath
+
'
/plotsmc/n=1_mockdata.png
'
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
,
dpi
=
300
)
def
modelmock
(
theta
):
"""
theta: comprised of alpha0, alpha1, beta0, beta1, x0, x1, and y0, y1
"""
alpha0
,
alpha1
,
beta0
,
beta1
,
xvar0
,
xvar1
,
yvar0
,
yvar1
=
theta
#alpha0, beta0, xvar0, yvar0 = theta
tauvar0
=
tau0
*
(
1
+
beta0
)
wvar0
=
w0
*
(
1
+
alpha0
)
tauvar1
=
tau1
*
(
1
+
beta1
)
wvar1
=
w1
*
(
1
+
alpha1
)
ansatz
=
(
xvar0
*
np
.
exp
(
1j
*
yvar0
))
*
np
.
exp
(
-
t
/
tauvar0
)
*
(
np
.
cos
(
wvar0
*
t
)
-
1j
*
np
.
sin
(
wvar0
*
t
))
+
\
(
xvar1
*
np
.
exp
(
1j
*
yvar1
))
*
np
.
exp
(
-
t
/
tauvar1
)
*
(
np
.
cos
(
wvar1
*
t
)
-
1j
*
np
.
sin
(
wvar1
*
t
))
# -1j to agree with SXS convention
return
ansatz
# LogLikelihood function. It is just a Gaussian loglikelihood based on computing the residuals^2
def
log_likelihood
(
theta
):
model_mock
=
modelmock
(
theta
)
return
-
np
.
sum
((
mockdata
.
real
-
model_mock
.
real
)
**
2
+
(
mockdata
.
imag
-
model_mock
.
imag
)
**
2
)
def
prior_transform
(
cube
):
cube
[
0
]
=
-
0.4
+
cube
[
0
]
*
0.8
cube
[
1
]
=
-
0.4
+
cube
[
1
]
*
0.8
cube
[
2
]
=
-
1
+
cube
[
2
]
*
3
cube
[
3
]
=
-
1
+
cube
[
3
]
*
3
cube
[
4
]
=
0
+
cube
[
4
]
*
6
cube
[
5
]
=
0
+
cube
[
5
]
*
6
cube
[
6
]
=
-
np
.
pi
+
cube
[
6
]
*
2
*
np
.
pi
cube
[
7
]
=
-
np
.
pi
+
cube
[
7
]
*
2
*
np
.
pi
return
cube
sampler
=
dynesty
.
NestedSampler
(
log_likelihood
,
prior_transform
,
ndim
,
nlive
=
1000
)
sampler
.
run_nested
()
res
=
sampler
.
results
res
.
samples_u
.
shape
dim
=
2
paramlabels_a
=
[
r
'
$\alpha_
'
+
str
(
i
)
+
'
$
'
for
i
in
range
(
dim
)]
paramlabels_b
=
[
r
'
$\beta_
'
+
str
(
i
)
+
'
$
'
for
i
in
range
(
dim
)]
paramlabels_x
=
[
r
'
$x_
'
+
str
(
i
)
+
'
$
'
for
i
in
range
(
dim
)]
paramlabels_y
=
[
r
'
$y_
'
+
str
(
i
)
+
'
$
'
for
i
in
range
(
dim
)]
paramlabels
=
paramlabels_a
+
paramlabels_b
+
paramlabels_x
+
paramlabels_y
print
(
'
Our constraints:
'
)
fg
,
ax
=
dyplot
.
cornerplot
(
res
,
color
=
'
red
'
,
show_titles
=
True
,
labels
=
paramlabels
,
quantiles
=
None
)
fg
.
savefig
(
rootpath
+
'
/plotsmc/n=1_mockfit_tstep=
'
+
str
(
tstep
)
+
'
.png
'
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
,
dpi
=
300
)
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment