Skip to content
Snippets Groups Projects
Commit 7626934f authored by Rayne Liu's avatar Rayne Liu
Browse files

Adjusted memory request, need to change range

parent 12affac8
No related branches found
No related tags found
No related merge requests found
......@@ -41,11 +41,11 @@ tshift=3.6
vary_fund = True
#sampler parameters
npoints=1002
npoints=13700
nwalkers = 840
ntemps=12
ndim = int(4*(nmax+1))
burnin = 500 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
burnin = 4200 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
#This is trivial but often forgotten: this cannot be more than npoints! Usually 1/5~1/4 npoints is what I observe.
numbins = 42 #corner plot parameter - how many bins you want
datacolor = '#105670' #'#4fa3a7'
......@@ -176,8 +176,8 @@ def log_probability(theta):
#Fit with ptemcee
#Set the number of cores of your processors
pool = choose_pool(64)
pool.size = 64
pool = choose_pool(16)
pool.size = 16
vary_param = float(vary_fund)
np.random.seed(42)
pos = np.array([[random.uniform(-0.1,0.1), random.uniform(-0.1,0.1), 4.28313743e-01, random.uniform(2.5, 2.6) + (1-vary_param) * np.pi]])
......
......@@ -35,17 +35,17 @@ from scipy.optimize import minimize
#tshift: time shift after the strain peak
#vary_fund: whether you vary the fundamental frequency. Works in the model_dv function.
rootpath="/Users/RayneLiu"#"/work/rayne.liu"
rootpath="/work/rayne.liu"#"/Users/RayneLiu"
nmax=1
tshift=19
vary_fund = True
#sampler parameters
npoints=102
nwalkers = 42
npoints=13700
nwalkers = 840
ntemps=12
ndim = int(4*(nmax+1))
burnin = 20 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
burnin = 4200 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
#This is trivial but often forgotten: this cannot be more than npoints! Usually 1/5~1/4 npoints is what I observe.
numbins = 42 #corner plot parameter - how many bins you want
datacolor = '#105670' #'#4fa3a7'
......@@ -177,8 +177,8 @@ def log_probability(theta):
#Fit with ptemcee
#Set the number of cores of your processors
pool = choose_pool(64)
pool.size = 64
pool = choose_pool(16)
pool.size = 16
vary_param = float(vary_fund)
np.random.seed(42)
pos = np.array([[random.uniform(-0.1,0.1), random.uniform(-0.1,0.1), 4.28313743e-01, random.uniform(2.5, 2.6) + (1-vary_param) * np.pi]])
......
......@@ -42,11 +42,11 @@ tshift=0
vary_fund = False
#sampler parameters
npoints=100
nwalkers = 42
npoints=13700
nwalkers = 840
ntemps=12
ndim = int(4*(nmax+1))
burnin = 20 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
burnin = 4200 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
#This is trivial but often forgotten: this cannot be more than npoints! Usually 1/5~1/4 npoints is what I observe.
numbins = 42 #corner plot parameter - how many bins you want
datacolor = '#105670' #'#4fa3a7'
......@@ -178,8 +178,8 @@ def log_probability(theta):
#Fit with ptemcee
#Set the number of cores of your processors
pool = choose_pool(64)
pool.size = 64
pool = choose_pool(16)
pool.size = 16
vary_param = float(vary_fund)
np.random.seed(42)
pos = np.array([[random.uniform(-0.1,0.1), random.uniform(-0.1,0.1), 4.28313743e-01, random.uniform(2.5, 2.6) + (1-vary_param) * np.pi]])
......
......@@ -42,11 +42,11 @@ tshift=19
vary_fund = False
#sampler parameters
npoints=102
nwalkers = 42
npoints=13700
nwalkers = 840
ntemps=12
ndim = int(4*(nmax+1))
burnin = 20 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
burnin = 4200 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
#This is trivial but often forgotten: this cannot be more than npoints! Usually 1/5~1/4 npoints is what I observe.
numbins = 42 #corner plot parameter - how many bins you want
datacolor = '#105670' #'#4fa3a7'
......@@ -178,8 +178,8 @@ def log_probability(theta):
#Fit with ptemcee
#Set the number of cores of your processors
pool = choose_pool(64)
pool.size = 64
pool = choose_pool(16)
pool.size = 16
vary_param = float(vary_fund)
np.random.seed(42)
pos = np.array([[random.uniform(-0.1,0.1), random.uniform(-0.1,0.1), 4.28313743e-01, random.uniform(2.5, 2.6) + (1-vary_param) * np.pi]])
......
......@@ -12,8 +12,8 @@ initialdir = .
notify_user = rl746@cornell.edu
notification = Complete
arguments = "-processid $(Process)"
request_memory = 512GB
request_cpus = 64
request_memory = 232GB
request_cpus = 16
on_exit_remove = (ExitBySignal == False) || ((ExitBySignal == True) && (ExitSignal != 11))
accounting_group = aei.dev.test_dynesty
queue 1
......
......@@ -12,8 +12,8 @@ initialdir = .
notify_user = rl746@cornell.edu
notification = Complete
arguments = "-processid $(Process)"
request_memory = 512GB
request_cpus = 64
request_memory = 232GB
request_cpus = 16
on_exit_remove = (ExitBySignal == False) || ((ExitBySignal == True) && (ExitSignal != 11))
accounting_group = aei.dev.test_dynesty
queue 1
......
......@@ -12,8 +12,8 @@ initialdir = .
notify_user = rl746@cornell.edu
notification = Complete
arguments = "-processid $(Process)"
request_memory = 512GB
request_cpus = 64
request_memory = 232GB
request_cpus = 16
on_exit_remove = (ExitBySignal == False) || ((ExitBySignal == True) && (ExitSignal != 11))
accounting_group = aei.dev.test_dynesty
queue 1
......
......@@ -12,8 +12,8 @@ initialdir = .
notify_user = rl746@cornell.edu
notification = Complete
arguments = "-processid $(Process)"
request_memory = 512GB
request_cpus = 64
request_memory = 232GB
request_cpus = 16
on_exit_remove = (ExitBySignal == False) || ((ExitBySignal == True) && (ExitSignal != 11))
accounting_group = aei.dev.test_dynesty
queue 1
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment