Skip to content
Snippets Groups Projects
Commit eff154bc authored by Rayne Liu's avatar Rayne Liu
Browse files

Added waveform band plotting

parent 5193ed90
No related branches found
No related tags found
No related merge requests found
...@@ -42,12 +42,12 @@ tshift=10 ...@@ -42,12 +42,12 @@ tshift=10
vary_fund = True vary_fund = True
#sampler parameters #sampler parameters
npoints = 1200 npoints = 100#1200
nwalkers = 256 nwalkers = 30#256
ntemps=12 ntemps=12
dim = nmax+1 dim = nmax+1
ndim = 4*dim ndim = 4*dim
burnin = 600 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit. burnin = 50#600 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
#This is trivial but often forgotten: this cannot be more than npoints! I usually use half the points. #This is trivial but often forgotten: this cannot be more than npoints! I usually use half the points.
numbins = 32 #corner plot parameter - how many bins you want numbins = 32 #corner plot parameter - how many bins you want
datacolor = '#105670' #'#4fa3a7' datacolor = '#105670' #'#4fa3a7'
...@@ -180,8 +180,8 @@ def log_prior(theta): ...@@ -180,8 +180,8 @@ def log_prior(theta):
return 0.0 return 0.0
elif tshift == 10: elif tshift == 10:
if all([0.54 <= omega0 <= 0.6, 0.4 <= omega1 <= 0.58, 8.8 <= tau0 <= 14.2, 3.7 <= tau1 <= 10., \ if all([0.54 <= omega0 <= 0.6, 0.35 <= omega1 <= 0.64, 9.1 <= tau0 <= 15.7, 0. <= tau1 <= 9., \
0. <= xvar0 <= 1.0, 0. <= xvar1 <= 1.2, 0 <= yvar0 <= 2*np.pi, -np.pi <= yvar1 <= np.pi]): 0. <= xvar0 <= 1.0, 0. <= xvar1 <= 1.2, -np.pi <= yvar0 <= np.pi, -np.pi <= yvar1 <= np.pi]):
return 0.0 return 0.0
return -np.inf return -np.inf
...@@ -288,3 +288,25 @@ for yi in range(naxes): ...@@ -288,3 +288,25 @@ for yi in range(naxes):
ax.axhline(median[yi], color=mediancolor) ax.axhline(median[yi], color=mediancolor)
ax.plot(median[xi], median[yi], color = mediancolor, marker = 's') ax.plot(median[xi], median[yi], color = mediancolor, marker = 's')
figcorn.savefig(rootpath + '/plotsmc/0001_10M_interpolated_cornerplot_wandt_'+'nmax'+str(nmax)+'_tshift'+str(tshift)+'_'+str(nwalkers)+'walkers_'+str(npoints)+'pts.png', format='png', bbox_inches='tight', dpi=300) figcorn.savefig(rootpath + '/plotsmc/0001_10M_interpolated_cornerplot_wandt_'+'nmax'+str(nmax)+'_tshift'+str(tshift)+'_'+str(nwalkers)+'walkers_'+str(npoints)+'pts.png', format='png', bbox_inches='tight', dpi=300)
#Now plot the NR data against the mcmc fit data, together with the 1-sigma varying error data
onesig_bounds = np.array([np.percentile(samples[:, i], [16, 84]) for i in range(len(samples[0]))]).T
modelfitpk = model_dv(pk)
figband = plt.figure(figsize = (12, 9))
#Plot the 1-sigma_percentile
for j in range(len(samples)):
sample = samples[j]
if np.all(onesig_bounds[0] <= sample) and np.all(sample <= onesig_bounds[1]):
plt.plot(timespan_new, model_dv(sample).real, "#79CAF2", alpha=0.3)
plt.plot(timespan_new, gwdatanew_re, "k", alpha=0.7, lw=2, label=r'NR_re')
plt.plot(timespan_new, modelfitpk.real, "r", alpha=0.7, lw=2, label=r'FitMCmax_re')
plt.title(r'Comparison of the MC fit data and the $1-\sigma$ error band')
plt.legend()
plt.xlabel("t")
plt.ylabel("h")
figband.savefig(rootpath + '/plotsmc/0001_10M_interpolated_waveform_wandt_'+'nmax'+str(nmax)+'_tshift'+str(tshift)+'_'+str(nwalkers)+'walkers_'+str(npoints)+'pts.png', format = 'png', dpi = 384, bbox_inches = 'tight')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment