Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RDStackingProject
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yifan Wang
RDStackingProject
Commits
fe0a08c3
Commit
fe0a08c3
authored
4 years ago
by
frcojimenez
Browse files
Options
Downloads
Patches
Plain Diff
added the cte error option
parent
15981225
No related branches found
No related tags found
No related merge requests found
Changes
2
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
code_new/NR_dynesty_t0_loop.ipynb
+326
-137
326 additions, 137 deletions
code_new/NR_dynesty_t0_loop.ipynb
code_new/NR_dynesty_t0_loop.py
+114
-218
114 additions, 218 deletions
code_new/NR_dynesty_t0_loop.py
with
440 additions
and
355 deletions
code_new/NR_dynesty_t0_loop.ipynb
+
326
−
137
View file @
fe0a08c3
This diff is collapsed.
Click to expand it.
code_new/NR_dynesty_t0_loop.py
100755 → 100644
+
114
−
218
View file @
fe0a08c3
#!/usr/bin/env python
# coding: utf-8
# In[48]:
#Import relevant modules, import data and all that
import
numpy
as
np
from
scipy
import
interpolate
...
...
@@ -44,14 +38,10 @@ try:
parser
.
sections
()
except
SystemExit
:
parser
=
ConfigParser
()
parser
.
read
(
'
config.ini
'
)
parser
.
read
(
'
config
_n1
.ini
'
)
parser
.
sections
()
pass
# In[49]:
# path
rootpath
=
parser
.
get
(
'
nr-paths
'
,
'
rootpath
'
)
...
...
@@ -66,18 +56,10 @@ overwrite = parser.get('setup','overwrite')
downfactor
=
np
.
int
(
parser
.
get
(
'
setup
'
,
'
plot_down_factor
'
))
sampler
=
parser
.
get
(
'
setup
'
,
'
sampler
'
)
# In[50]:
if
not
os
.
path
.
exists
(
output_folder
):
os
.
mkdir
(
output_folder
)
print
(
"
Directory
"
,
output_folder
,
"
Created
"
)
# In[51]:
# time config
tshift
=
parser
.
get
(
'
time-setup
'
,
'
tshift
'
)
...
...
@@ -89,10 +71,6 @@ tend = np.float(tend)
t_align
=
parser
.
get
(
'
time-setup
'
,
'
t_align
'
)
t_align
=
np
.
float
(
t_align
)
# In[52]:
# n-tones & nlive
nmax
=
parser
.
get
(
'
n-tones
'
,
'
nmax
'
)
...
...
@@ -101,13 +79,17 @@ nmax = np.int(nmax)
npoints
=
parser
.
get
(
'
n-live-points
'
,
'
npoints
'
)
npoints
=
np
.
int
(
npoints
)
# In[81]:
# model
model
=
parser
.
get
(
'
rd-model
'
,
'
model
'
)
error_str
=
eval
(
parser
.
get
(
'
rd-model
'
,
'
error_str
'
))
if
error_str
:
error_val
=
np
.
float
(
parser
.
get
(
'
rd-model
'
,
'
error_val
'
))
if
error_val
==
0
:
error_type
=
'
NR_estimate
'
else
:
error_type
=
error_val
if
model
==
'
w-tau
'
:
tau_var_str
=
'
tau
'
elif
model
==
'
w-q
'
:
...
...
@@ -119,35 +101,26 @@ print('model:',model)
print
(
'
nmax:
'
,
nmax
)
print
(
'
tshift:
'
,
tshift
)
print
(
'
error:
'
,
error_str
)
print
(
'
error value:
'
,
error_type
)
# In[83]:
if
error_str
:
output_folder_1
=
output_folder
+
'
/
'
+
model
+
'
-nmax
'
+
str
(
nmax
)
+
'
_
'
+
str
(
error_str
)
+
'
_
'
+
str
(
error_type
)
else
:
output_folder_1
=
output_folder
+
'
/
'
+
model
+
'
-nmax
'
+
str
(
nmax
)
+
'
_
'
+
str
(
error_str
)
if
not
os
.
path
.
exists
(
output_folder_1
):
os
.
mkdir
(
output_folder_1
)
print
(
"
Directory
"
,
output_folder_1
,
"
Created
"
)
# In[84]:
corner_plot
=
output_folder_1
+
'
/Dynesty_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot.png
'
diagnosis_plot
=
output_folder_1
+
'
/Dynesty_diagnosis
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
.png
'
fit_plot
=
output_folder_1
+
'
/Fit_results_
'
+
str
(
simulation_number
)
+
'
tshift_
'
+
str
(
tshift
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.png
'
# In[85]:
samples_file
=
output_folder_1
+
'
/posterior_samples-
'
+
str
(
simulation_number
)
+
'
tshift_
'
+
str
(
tshift
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
sumary_data
=
output_folder_1
+
'
/summary
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
best_data
=
output_folder_1
+
'
/best_values_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
# In[86]:
# loading priors
w_mins
=
np
.
empty
(
nmax
+
1
)
w_maxs
=
np
.
empty
(
nmax
+
1
)
...
...
@@ -193,10 +166,6 @@ if model == 'w-tau-fixed':
priors_max
=
np
.
concatenate
((
a_maxs
,
ph_maxs
))
prior_dim
=
len
(
priors_min
)
# In[87]:
vary_fund
=
True
#sampler parameters
...
...
@@ -222,8 +191,8 @@ def EasyMatchT(t,h1,h2,tmin,tmax):
#Computes the match for complex waveforms
pos
=
np
.
argmax
(
t
>=
(
tmin
));
h1red
=
h1
[
pos
:
-
1
];
h2red
=
h2
[
pos
:
-
1
];
h1red
=
h1
[
pos
:];
h2red
=
h2
[
pos
:];
norm1
=
np
.
sum
(
np
.
abs
(
h1red
)
**
2
)
norm2
=
np
.
sum
(
np
.
abs
(
h2red
)
**
2
)
...
...
@@ -233,6 +202,18 @@ def EasyMatchT(t,h1,h2,tmin,tmax):
return
res
def
EasySNRT
(
t
,
h1
,
h2
,
tmin
,
tmax
):
#Computes the match for complex waveforms
pos
=
np
.
argmax
(
t
>=
(
tmin
));
h1red
=
h1
[
pos
:];
h2red
=
h2
[
pos
:];
myTable
=
h1red
*
np
.
conjugate
(
h2red
)
res
=
2
*
np
.
sqrt
((
np
.
sum
(
myTable
)).
real
)
return
res
def
wRD_to_f_Phys
(
f
,
M
):
c
=
2.99792458
*
10
**
8
;
G
=
6.67259
*
10
**
(
-
11
);
MS
=
1.9885
*
10
**
30
;
return
(
c
**
3
/
(
M
*
MS
*
G
*
2
*
np
.
pi
))
*
f
...
...
@@ -242,8 +223,16 @@ def tauRD_to_t_Phys(tau,M):
return
((
M
*
MS
*
G
)
/
c
**
3
)
*
tau
# In[88]:
def
twopoint_autocovariance
(
t
,
n
):
#Computes the match for complex waveforms
dt
=
t
[
1
]
-
t
[
0
]
res
=
np
.
zeros
(
len
(
n
))
taus
=
np
.
zeros
(
len
(
n
))
for
tau
in
range
(
0
,
int
(
len
(
n
)
/
2
)):
ntau
=
np
.
roll
(
n
,
tau
)
taus
[
tau
]
=
t
[
tau
]
res
[
tau
]
=
np
.
sum
(
n
*
ntau
).
real
return
(
taus
[:
int
(
len
(
n
)
/
2
)],
res
[:
int
(
len
(
n
)
/
2
)])
#This loads the 22 mode data
gw
=
{}
...
...
@@ -273,21 +262,13 @@ times5 = gw5_sxs_bbh_0305[:,0]
tmax5
=
FindTmaximum
(
gw5_sxs_bbh_0305
)
times5
=
times5
-
tmax5
# In[89]:
#Select the data from 0 onwards
position
=
np
.
argmax
(
times
>=
(
t_align
))
position5
=
np
.
argmax
(
times5
>=
(
t_align
))
gw_sxs_bbh_0305rd
=
gw_sxs_bbh_0305
[
position
+
1
:
-
1
]
gw_sxs_bbh_0305rd5
=
gw5_sxs_bbh_0305
[
position5
+
1
:
-
1
]
timesrd
=
gw_sxs_bbh_0305
[
position
:
-
1
][:,
0
][:
-
1
]
-
tmax
timesrd5
=
gw5_sxs_bbh_0305
[
position5
:
-
1
][:,
0
][:
-
1
]
-
tmax5
# In[90]:
gw_sxs_bbh_0305rd
=
gw_sxs_bbh_0305
[
position
+
1
:]
gw_sxs_bbh_0305rd5
=
gw5_sxs_bbh_0305
[
position5
+
1
:]
timesrd
=
gw_sxs_bbh_0305
[
position
:
-
1
][:,
0
][:]
-
tmax
timesrd5
=
gw5_sxs_bbh_0305
[
position5
:
-
1
][:,
0
][:]
-
tmax5
#Test plot real part (data was picked in the last cell). Aligning in time
plt
.
figure
(
figsize
=
(
12
,
8
))
...
...
@@ -297,10 +278,6 @@ plt.plot(timesrd5, gw_sxs_bbh_0305rd5[:,1], "b", alpha=0.3, lw=3, label=r'$Lev5:
plt
.
plot
(
timesrd5
,
np
.
sqrt
(
gw_sxs_bbh_0305rd5
[:,
1
]
**
2
+
gw_sxs_bbh_0305rd5
[:,
2
]
**
2
),
"
b
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5\,amp$
'
)
plt
.
legend
()
# In[91]:
#Test plot im part (data was picked in the last cell). Aligning in time
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
2
],
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev6: imag$
'
)
...
...
@@ -309,29 +286,17 @@ plt.plot(timesrd5, gw_sxs_bbh_0305rd5[:,2], "b", alpha=0.3, lw=3, label=r'$Lev5:
plt
.
plot
(
timesrd5
,
np
.
sqrt
(
gw_sxs_bbh_0305rd5
[:,
1
]
**
2
+
gw_sxs_bbh_0305rd5
[:,
2
]
**
2
),
"
b
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5\,amp$
'
)
plt
.
legend
()
# In[92]:
# Depending on nmax, you load nmax number of freqs. and damping times from the qnm package
omegas
=
[
qnm
.
modes_cache
(
s
=-
2
,
l
=
2
,
m
=
2
,
n
=
i
)(
a
=
af
)[
0
]
for
i
in
range
(
0
,
dim
)]
w
=
(
np
.
real
(
omegas
))
/
mf
tau
=-
1
/
(
np
.
imag
(
omegas
))
*
mf
# In[93]:
gwnew_re
=
interpolate
.
interp1d
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
1
],
kind
=
'
cubic
'
)
gwnew_im
=
interpolate
.
interp1d
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
2
],
kind
=
'
cubic
'
)
gwnew_re5
=
interpolate
.
interp1d
(
timesrd5
,
gw_sxs_bbh_0305rd5
[:,
1
],
kind
=
'
cubic
'
)
gwnew_im5
=
interpolate
.
interp1d
(
timesrd5
,
gw_sxs_bbh_0305rd5
[:,
2
],
kind
=
'
cubic
'
)
# In[94]:
if
timesrd5
[
-
1
]
>=
timesrd
[
-
1
]:
timesrd_final
=
timesrd
else
:
...
...
@@ -345,17 +310,36 @@ gwdatanew_im5 = gwnew_im5(timesrd_final)
gwdatanew
=
gwdatanew_re
-
1j
*
gwdatanew_im
gwdatanew5
=
gwdatanew_re5
-
1j
*
gwdatanew_im5
# In[95]:
taus
,
corr
=
twopoint_autocovariance
(
timesrd
,
gwdatanew
-
gwdatanew5
)
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
taus
,
corr
,
'
ro
'
)
plt
.
show
()
vmax
=
np
.
max
(
corr
)
index
=
np
.
argmax
(
corr
==
vmax
)
taus
[
index
]
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
0
+
90
)
error
=
np
.
sqrt
(
2
*
mismatch
)
print
(
mismatch
)
print
(
'
error estimate:
'
,
error
)
print
(
'
mismatch:
'
,
mismatch
)
print
(
'
snr:
'
,
EasySNRT
(
timesrd_final
,
gwdatanew
,
gwdatanew
,
0
,
0
+
90
)
/
error
**
2
)
# In[96]:
if
error_str
and
error_val
==
0
:
error
=
np
.
sqrt
(
gwdatanew
*
gwdatanew
-
2
*
gwdatanew
*
gwdatanew5
+
gwdatanew5
*
gwdatanew5
)
error_est
=
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
)
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd_final
,
gwdatanew
.
real
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev6
'
)
plt
.
plot
(
timesrd_final
,
gwdatanew5
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev5
'
)
plt
.
plot
(
timesrd_final
,
error_est
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error
'
)
plt
.
legend
()
if
error_str
and
error_val
==
0
:
error
=
np
.
sqrt
(
gwdatanew
*
gwdatanew
-
2
*
gwdatanew
*
gwdatanew5
+
gwdatanew5
*
gwdatanew5
)
error_est
=
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
)
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
xlim
(
0
,
80
)
plt
.
plot
(
timesrd_final
,
np
.
abs
(
gwdatanew
)
/
error_est
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev6
'
)
plt
.
legend
()
# Phase alignement
phas
=
np
.
angle
(
gwdatanew
)
...
...
@@ -365,10 +349,6 @@ phas5 = np.unwrap(phas5)
plt
.
plot
(
timesrd_final
,
phas
,
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
# In[97]:
position
=
np
.
argmax
(
timesrd_final
>=
(
t_align
))
dphase
=
phas5
[
position
]
-
phas
[
position
]
print
(
dphase
)
...
...
@@ -384,44 +364,40 @@ phas5 = np.unwrap(phas5)
plt
.
plot
(
timesrd_final
,
phas
,
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
# In[98]:
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
+
90
)
print
(
mismatch
)
error
=
np
.
sqrt
(
2
*
mismatch
)
print
(
'
error estimate:
'
,
error
)
print
(
'
mismatch:
'
,
mismatch
)
print
(
'
snr:
'
,
EasySNRT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
0
+
90
)
/
error
)
if
error_str
:
error
=
np
.
sqrt
(
gwdatanew
*
gwdatanew
-
2
*
gwdatanew
*
gwdatanew5
+
gwdatanew5
*
gwdatanew5
)
error_est
=
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
)
else
:
error
=
1
# In[100]:
EasySNRT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
/
error
,
0
,
0
+
90
)
#Test the new interpolated data
if
error_str
:
if
error_str
and
error_val
==
0
:
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd_final
,
gwdatanew
.
real
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev6
'
)
plt
.
plot
(
timesrd_final
,
gwdatanew5
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev5
'
)
plt
.
plot
(
timesrd_final
,
error
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error
'
)
plt
.
legend
()
# In[101]:
#Test the error data
if
error_str
:
if
error_str
and
error_val
==
0
:
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd_final
,
error
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error real
'
)
plt
.
plot
(
timesrd_final
,
error
.
imag
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error imag
'
)
plt
.
plot
(
timesrd_final
,
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
),
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
all error
'
)
plt
.
legend
()
# In[103]:
#Test the error data
if
error_str
and
error_val
==
0
:
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
xlim
(
1
,
40
)
plt
.
ylim
(
-
300
,
300
)
plt
.
plot
(
timesrd_final
,
gwdatanew
.
real
/
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
),
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
all error
'
)
plt
.
legend
()
#Take the piece of waveform you want
position_in
=
np
.
argmax
(
timesrd_final
>=
tshift
)
...
...
@@ -429,14 +405,10 @@ position_end = np.argmax(timesrd_final >= tend)
timesrd_final_tsh
=
timesrd_final
[
position_in
:
position_end
]
gwdatanew_re_tsh
=
gwdatanew_re
[
position_in
:
position_end
]
gwdatanew_im_tsh
=
gwdatanew_im
[
position_in
:
position_end
]
if
error_str
:
if
error_str
and
error_val
==
0
:
error_tsh
=
error
[
position_in
:
position_end
]
else
:
error_tsh
=
1
# In[104]:
error_tsh
=
error_val
#Fitting
#RD model for nmax tones. Amplitudes are in (xn*Exp[i yn]) version. Used here.
...
...
@@ -509,16 +481,8 @@ def log_probability(theta):
return
-
np
.
inf
return
lp
+
log_likelihood
(
theta
)
# In[105]:
dict
=
{
'
w-tau
'
:
model_dv_tau
,
'
w-q
'
:
model_dv_q
,
'
w-tau-fixed
'
:
model_dv
}
# In[106]:
#I need to provid an initial guess for 4*(nmax+1) the parameters
np
.
random
.
seed
(
42
)
nll
=
lambda
*
args
:
-
log_likelihood
(
*
args
)
...
...
@@ -529,16 +493,8 @@ print("Maximum likelihood estimates:")
vars_ml
=
soln
.
x
print
(
vars_ml
)
# In[107]:
f2
=
dynesty
.
NestedSampler
(
log_likelihood
,
prior_transform
,
prior_dim
,
nlive
=
npoints
,
sample
=
sampler
)
f2
.
run_nested
()
# In[108]:
f2
.
run_nested
(
dlogz
=
0.01
)
wstr
=
r
'
$\omega_
'
...
...
@@ -568,10 +524,6 @@ labels = np.concatenate((w_lab,tau_lab,amp_lab,pha_lab))
if
model
==
'
w-tau-fixed
'
:
labels
=
np
.
concatenate
((
amp_lab
,
pha_lab
))
# In[109]:
if
model
==
'
w-tau-fixed
'
:
rg
=
(
nmax
+
1
)
else
:
...
...
@@ -591,32 +543,17 @@ else:
amps_aux
=
samps_tr
[
i
][
half_points
:
-
1
]
npamps
[
i
]
=
np
.
quantile
(
amps_aux
,
0.5
)
# In[110]:
res
=
f2
.
results
res
.
samples_u
.
shape
res
.
summary
()
samps
=
f2
.
results
.
samples
# In[111]:
evidence
=
res
.
logz
[
-
1
]
evidence_error
=
res
.
logzerr
[
-
1
]
# In[112]:
summary_titles
=
[
'
n
'
,
'
id
'
,
'
t_shift
'
,
'
dlogz
'
,
'
dlogz_err
'
]
# In[113]:
if
not
eval
(
overwrite
):
if
os
.
path
.
exists
(
sumary_data
):
outvalues
=
np
.
array
([[
nmax
,
simulation_number
,
tshift
,
evidence
,
evidence_error
]])
else
:
...
...
@@ -629,49 +566,30 @@ with open(sumary_data, 'a') as file:
else
:
writer
.
writerow
(
outvalues
[
0
])
# In[114]:
samps
=
f2
.
results
.
samples
samps_tr
=
np
.
transpose
(
samps
)
# In[115]:
sigma_vars_m
=
np
.
empty
(
prior_dim
)
sigma_vars_p
=
np
.
empty
(
prior_dim
)
sigma_vars
=
np
.
empty
(
prior_dim
)
for
i
in
range
(
prior_dim
):
amps_aux
=
samps_tr
[
i
][
half_points
:
-
1
]
amps_aux
=
samps_tr
[
i
][
half_points
:]
sigma_vars_m
[
i
]
=
np
.
quantile
(
amps_aux
,
0.1
)
sigma_vars
[
i
]
=
np
.
quantile
(
amps_aux
,
0.5
)
sigma_vars_p
[
i
]
=
np
.
quantile
(
amps_aux
,
0.9
)
# In[116]:
sigma_vars_all
=
[
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
]
sigma_vars_all
=
np
.
stack
([
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
],
axis
=
0
)
# In[117]:
key
=
[
'
max val
'
,
'
lower bound
'
,
'
higher bound
'
]
dfslist
=
[
pd
.
DataFrame
(
np
.
concatenate
(([
tshift
],
sigma_vars_all
[
i
])).
reshape
((
-
1
,
prior_dim
+
1
)),
columns
=
np
.
concatenate
(([
'
tshift
'
],
labels
)),
index
=
[
key
[
i
]])
for
i
in
range
(
3
)]
df2
=
pd
.
concat
(
dfslist
)
if
not
eval
(
overwrite
):
if
os
.
path
.
exists
(
best_data
):
df2
.
to_csv
(
best_data
,
mode
=
'
a
'
,
header
=
False
,
index
=
True
)
else
:
df2
.
to_csv
(
best_data
,
index
=
True
)
# In[118]:
if
model
==
'
w-q
'
:
tau_val
=
np
.
pi
*
w
*
tau
truths
=
np
.
concatenate
((
w
,
tau_val
,
npamps
))
...
...
@@ -681,10 +599,6 @@ elif model == 'w-tau':
elif
model
==
'
w-tau-fixed
'
:
truths
=
npamps
# In[119]:
fg
,
ax
=
dyplot
.
cornerplot
(
res
,
color
=
'
blue
'
,
show_titles
=
True
,
labels
=
labels
,
...
...
@@ -693,32 +607,18 @@ fg, ax = dyplot.cornerplot(res, color='blue',
truth_color
=
'
red
'
,
)
# In[121]:
if
not
eval
(
overwrite
):
fg
.
savefig
(
corner_plot
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
)
# In[122]:
from
dynesty
import
plotting
as
dyplot
lnz_truth
=
ndim
*
-
np
.
log
(
2
*
10.
)
# analytic evidence solution
fig
,
axes
=
dyplot
.
runplot
(
res
,
lnz_truth
=
lnz_truth
)
fig
.
tight_layout
()
# In[123]:
if
not
eval
(
overwrite
):
fig
.
savefig
(
diagnosis_plot
,
format
=
'
png
'
,
dpi
=
384
,
bbox_inches
=
'
tight
'
)
# In[124]:
figband
=
plt
.
figure
(
figsize
=
(
12
,
9
))
plt
.
plot
(
timesrd_final_tsh
,
gwdatanew_re_tsh
,
"
green
"
,
alpha
=
0.9
,
lw
=
3
,
label
=
r
'
$res_{240}$
'
)
plt
.
plot
(
timesrd_final_tsh
,
dict
[
model
](
vars_ml
).
real
,
'
bo
'
,
alpha
=
0.9
,
lw
=
3
,
label
=
r
'
$fit$
'
)
...
...
@@ -726,22 +626,18 @@ onesig_bounds = np.array([np.percentile(samps[:, i], [16, 84]) for i in range(le
samples_1sigma
=
filter
(
lambda
sample
:
np
.
all
(
onesig_bounds
[
0
]
<=
sample
)
and
np
.
all
(
sample
<=
onesig_bounds
[
1
]),
samps
)
samples_1sigma_down
=
list
(
samples_1sigma
)[::
downfactor
]
for
sample
in
samples_1sigma_down
:
plt
.
plot
(
timesrd_final_tsh
,
dict
[
model
](
sample
).
real
,
"
r-
"
,
alpha
=
0.
04
,
lw
=
3
)
plt
.
plot
(
timesrd_final_tsh
,
dict
[
model
](
sample
).
real
,
"
r-
"
,
alpha
=
0.
1
,
lw
=
1
)
plt
.
title
(
r
'
Comparison of the MC fit data and the $1-\sigma$ error band
'
)
plt
.
legend
()
plt
.
xlabel
(
'
t
'
)
plt
.
ylabel
(
'
h
'
)
plt
.
show
()
# In[125]:
if
not
eval
(
overwrite
):
figband
.
savefig
(
fit_plot
)
# In[ ]:
if
not
eval
(
overwrite
):
with
open
(
samples_file
,
'
w
'
)
as
file
:
writer
=
csv
.
writer
(
file
)
writer
.
writerow
(
labels
)
writer
.
writerows
(
samps
[::
downfactor
])
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment