Select Git revision
generate_table.py
-
Gregory Ashton authoredGregory Ashton authored
weak_signal_follow_up.py 1.62 KiB
import pyfstat
F0 = 30.0
F1 = 0
F2 = 0
Alpha = 1.0
Delta = 0.5
# Properties of the GW data
sqrtSX = 1e-23
tstart = 1000000000
duration = 100*86400
tend = tstart+duration
tref = .5*(tstart+tend)
depth = 70
data_label = 'weak_signal_follow_up_depth_{:1.0f}'.format(depth)
h0 = sqrtSX / depth
data = pyfstat.Writer(
label=data_label, outdir='data', tref=tref,
tstart=tstart, F0=F0, F1=F1, F2=F2, duration=duration, Alpha=Alpha,
Delta=Delta, h0=h0, sqrtSX=sqrtSX)
data.make_data()
# The predicted twoF, given by lalapps_predictFstat can be accessed by
twoF = data.predict_fstat()
print 'Predicted twoF value: {}\n'.format(twoF)
# Search
theta_prior = {'F0': {'type': 'unif', 'lower': F0*(1-1e-6),
'upper': F0*(1+1e-6)},
'F1': F1, #{'type': 'unif', 'lower': F1*(1+1e-2),
#'upper': F1*(1-1e-2)},
'F2': F2,
'Alpha': {'type': 'unif', 'lower': Alpha-1e-2,
'upper': Alpha+1e-2},
'Delta': {'type': 'unif', 'lower': Delta-1e-2,
'upper': Delta+1e-2},
}
ntemps = 3
log10temperature_min = -1
nwalkers = 200
scatter_val = 1e-10
nsteps = [100, 100]
mcmc = pyfstat.MCMCFollowUpSearch(
label='weak_signal_follow_up', outdir='data',
sftfilepath='data/*'+data_label+'*sft', theta_prior=theta_prior, tref=tref,
minStartTime=tstart, maxStartTime=tend, nwalkers=nwalkers, nsteps=nsteps,
ntemps=ntemps, log10temperature_min=log10temperature_min,
scatter_val=scatter_val)
mcmc.run(R0=10, Vmin=100)
mcmc.plot_corner(add_prior=True)
mcmc.print_summary()
#mcmc.generate_loudest()