Skip to content
Snippets Groups Projects
Select Git revision
  • 72-improve-docs-for_optimal_setup
  • master default protected
  • os-path-join
  • develop-GA
  • add-higher-spindown-components
  • v1.3
  • v1.2
  • v1.1.2
  • v1.1.0
  • v1.0.1
10 results

generate_failures.py

Blame
  • generate_failures.py 2.85 KiB
    import pyfstat
    import numpy as np
    import os
    import time
    
    outdir = 'data'
    
    label = 'run_failures'
    data_label = '{}_data'.format(label)
    results_file_name = '{}/MCResults_failures.txt'.format(outdir)
    
    # Properties of the GW data
    sqrtSX = 2e-23
    tstart = 1000000000
    Tspan = 100*86400
    tend = tstart + Tspan
    
    # Fixed properties of the signal
    F0_center = 30
    F1_center = 1e-10
    F2 = 0
    tref = .5*(tstart+tend)
    
    
    VF0 = VF1 = 100
    DeltaF0 = VF0 * np.sqrt(3)/(np.pi*Tspan)
    DeltaF1 = VF1 * np.sqrt(45/4.)/(np.pi*Tspan**2)
    
    DeltaAlpha = 0.02
    DeltaDelta = 0.02
    
    depths = [140]
    
    nsteps = 50
    run_setup = [((nsteps, 0), 20, False),
                 ((nsteps, 0), 11, False),
                 ((nsteps, 0), 6, False),
                 ((nsteps, 0), 3, False),
                 ((nsteps, nsteps), 1, False)]
    
    
    for depth in depths:
        h0 = sqrtSX / float(depth)
        F0 = F0_center + np.random.uniform(-0.5, 0.5)*DeltaF0
        F1 = F1_center + np.random.uniform(-0.5, 0.5)*DeltaF1
        Alpha_center = np.random.uniform(0, 2*np.pi)
        Delta_center = np.arccos(2*np.random.uniform(0, 1)-1)-np.pi/2
        Alpha = Alpha_center + np.random.uniform(-0.5, 0.5)*DeltaAlpha
        Delta = Delta_center + np.random.uniform(-0.5, 0.5)*DeltaDelta
        psi = np.random.uniform(-np.pi/4, np.pi/4)
        phi = np.random.uniform(0, 2*np.pi)
        cosi = np.random.uniform(-1, 1)
    
        data = pyfstat.Writer(
            label=data_label, outdir=outdir, tref=tref,
            tstart=tstart, F0=F0, F1=F1, F2=F2, duration=Tspan, Alpha=Alpha,
            Delta=Delta, h0=h0, sqrtSX=sqrtSX, psi=psi, phi=phi, cosi=cosi,
            detector='H1,L1')
        data.make_data()
        predicted_twoF = data.predict_fstat()
    
        startTime = time.time()
        theta_prior = {'F0': {'type': 'unif',
                              'lower': F0_center-DeltaF0,
                              'upper': F0_center+DeltaF0},
                       'F1': {'type': 'unif',
                              'lower': F1_center-DeltaF1,
                              'upper': F1_center+DeltaF1},
                       'F2': F2,
                       'Alpha': {'type': 'unif',
                                 'lower': Alpha_center-DeltaAlpha,
                                 'upper': Alpha_center+DeltaAlpha},
                       'Delta': {'type': 'unif',
                                 'lower': Delta_center-DeltaDelta,
                                 'upper': Delta_center+DeltaDelta},
                       }
    
        ntemps = 2
        log10temperature_min = -1
        nwalkers = 100
    
        mcmc = pyfstat.MCMCFollowUpSearch(
            label=label, outdir=outdir,
            sftfilepath='{}/*{}*sft'.format(outdir, data_label),
            theta_prior=theta_prior,
            tref=tref, minStartTime=tstart, maxStartTime=tend,
            nwalkers=nwalkers, ntemps=ntemps,
            log10temperature_min=log10temperature_min)
        mcmc.run(run_setup=run_setup, create_plots=True, log_table=False,
                 gen_tex_table=False)
        d, maxtwoF = mcmc.get_max_twoF()
        print 'MaxtwoF = {}'.format(maxtwoF)