Skip to content
Snippets Groups Projects
Select Git revision
  • af3bc1f696511e31ab2a8942739fca9a0b518027
  • master default protected
  • 72-improve-docs-for_optimal_setup
  • os-path-join
  • develop-GA
  • add-higher-spindown-components
  • v1.3
  • v1.2
  • v1.1.2
  • v1.1.0
  • v1.0.1
11 results

fully_coherent_search.py

Blame
  • os_linux.cpp 101.98 KiB
    /*
     *  os_linux.cpp
     *
     * Home page of code is: http://smartmontools.sourceforge.net
     *
     * Copyright (C) 2003-10 Bruce Allen <smartmontools-support@lists.sourceforge.net>
     * Copyright (C) 2003-10 Doug Gilbert <dougg@torque.net>
     * Copyright (C) 2008    Hank Wu <hank@areca.com.tw>
     * Copyright (C) 2008    Oliver Bock <brevilo@users.sourceforge.net>
     * Copyright (C) 2008-10 Christian Franke <smartmontools-support@lists.sourceforge.net>
     * Copyright (C) 2008    Jordan Hargrave <jordan_hargrave@dell.com>
     *
     *  Parts of this file are derived from code that was
     *
     *  Written By: Adam Radford <linux@3ware.com>
     *  Modifications By: Joel Jacobson <linux@3ware.com>
     *                   Arnaldo Carvalho de Melo <acme@conectiva.com.br>
     *                    Brad Strand <linux@3ware.com>
     *
     *  Copyright (C) 1999-2003 3ware Inc.
     *
     *  Kernel compatablity By:     Andre Hedrick <andre@suse.com>
     *  Non-Copyright (C) 2000      Andre Hedrick <andre@suse.com>
     *
     * Other ars of this file are derived from code that was
     *
     * Copyright (C) 1999-2000 Michael Cornwell <cornwell@acm.org>
     * Copyright (C) 2000 Andre Hedrick <andre@linux-ide.org>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2, or (at your option)
     * any later version.
     *
     * You should have received a copy of the GNU General Public License
     * (for example COPYING); If not, see <http://www.gnu.org/licenses/>.
     *
     * This code was originally developed as a Senior Thesis by Michael Cornwell
     * at the Concurrent Systems Laboratory (now part of the Storage Systems
     * Research Center), Jack Baskin School of Engineering, University of
     * California, Santa Cruz. http://ssrc.soe.ucsc.edu/
     *
     */
    
    // This file contains the linux-specific IOCTL parts of
    // smartmontools. It includes one interface routine for ATA devices,
    // one for SCSI devices, and one for ATA devices behind escalade
    // controllers.
    
    #include "config.h"
    
    #include <errno.h>
    #include <fcntl.h>
    #include <glob.h>
    
    #include <scsi/scsi.h>
    #include <scsi/scsi_ioctl.h>
    #include <scsi/sg.h>
    #include <stdlib.h>
    #include <string.h>
    #include <sys/ioctl.h>
    #include <sys/stat.h>
    #include <sys/file.h>
    #include <unistd.h>
    #include <sys/uio.h>
    #include <sys/types.h>
    #ifndef makedev // old versions of types.h do not include sysmacros.h
    #include <sys/sysmacros.h>
    #endif
    #ifdef WITH_SELINUX
    #include <selinux/selinux.h>
    #endif
    
    #include "int64.h"
    #include "atacmds.h"
    #include "extern.h"
    #include "os_linux.h"
    #include "scsicmds.h"
    #include "utility.h"
    #include "extern.h"
    #include "cciss.h"
    #include "megaraid.h"
    
    #include "dev_interface.h"
    #include "dev_ata_cmd_set.h"
    
    #ifndef ENOTSUP
    #define ENOTSUP ENOSYS
    #endif
    
    #define ARGUSED(x) ((void)(x))
    
    const char *os_XXXX_c_cvsid="$Id$" \
    ATACMDS_H_CVSID CONFIG_H_CVSID INT64_H_CVSID OS_LINUX_H_CVSID SCSICMDS_H_CVSID UTILITY_H_CVSID;
    
    /* for passing global control variables */
    // (con->reportscsiioctl only)
    extern smartmonctrl *con;
    
    
    namespace os_linux { // No need to publish anything, name provided for Doxygen
    
    /////////////////////////////////////////////////////////////////////////////
    /// Shared open/close routines
    
    class linux_smart_device
    : virtual public /*implements*/ smart_device
    {
    public:
      explicit linux_smart_device(int flags, int retry_flags = -1)
        : smart_device(never_called),
          m_fd(-1),
          m_flags(flags), m_retry_flags(retry_flags)
          { }
    
      virtual ~linux_smart_device() throw();
    
      virtual bool is_open() const;
    
      virtual bool open();
    
      virtual bool close();
    
    protected:
      /// Return filedesc for derived classes.
      int get_fd() const
        { return m_fd; }
    
    private:
      int m_fd; ///< filedesc, -1 if not open.
      int m_flags; ///< Flags for ::open()
      int m_retry_flags; ///< Flags to retry ::open(), -1 if no retry
    };
    
    
    linux_smart_device::~linux_smart_device() throw()
    {
      if (m_fd >= 0)
        ::close(m_fd);
    }
    
    bool linux_smart_device::is_open() const
    {
      return (m_fd >= 0);
    }
    
    bool linux_smart_device::open()
    {
      m_fd = ::open(get_dev_name(), m_flags);
    
      if (m_fd < 0 && errno == EROFS && m_retry_flags != -1)
        // Retry
        m_fd = ::open(get_dev_name(), m_retry_flags);
    
      if (m_fd < 0) {
        if (errno == EBUSY && (m_flags & O_EXCL))
          // device is locked
          return set_err(EBUSY,
            "The requested controller is used exclusively by another process!\n"
            "(e.g. smartctl or smartd)\n"
            "Please quit the impeding process or try again later...");
        return set_err((errno==ENOENT || errno==ENOTDIR) ? ENODEV : errno);
      }
    
      if (m_fd >= 0) {
        // sets FD_CLOEXEC on the opened device file descriptor.  The
        // descriptor is otherwise leaked to other applications (mail
        // sender) which may be considered a security risk and may result
        // in AVC messages on SELinux-enabled systems.
        if (-1 == fcntl(m_fd, F_SETFD, FD_CLOEXEC))
          // TODO: Provide an error printing routine in class smart_interface
          pout("fcntl(set  FD_CLOEXEC) failed, errno=%d [%s]\n", errno, strerror(errno));
      }
    
      return true;
    }
    
    // equivalent to close(file descriptor)
    bool linux_smart_device::close()
    {
      int fd = m_fd; m_fd = -1;
      if (::close(fd) < 0)
        return set_err(errno);
      return true;
    }
    
    // examples for smartctl
    static const char  smartctl_examples[] =
    		  "=================================================== SMARTCTL EXAMPLES =====\n\n"
    		  "  smartctl --all /dev/hda                    (Prints all SMART information)\n\n"
    		  "  smartctl --smart=on --offlineauto=on --saveauto=on /dev/hda\n"
    		  "                                              (Enables SMART on first disk)\n\n"
    		  "  smartctl --test=long /dev/hda          (Executes extended disk self-test)\n\n"
    		  "  smartctl --attributes --log=selftest --quietmode=errorsonly /dev/hda\n"
    		  "                                      (Prints Self-Test & Attribute errors)\n"
    		  "  smartctl --all --device=3ware,2 /dev/sda\n"
    		  "  smartctl --all --device=3ware,2 /dev/twe0\n"
    		  "  smartctl --all --device=3ware,2 /dev/twa0\n"
    		  "          (Prints all SMART info for 3rd ATA disk on 3ware RAID controller)\n"
    		  "  smartctl --all --device=hpt,1/1/3 /dev/sda\n"
    		  "          (Prints all SMART info for the SATA disk attached to the 3rd PMPort\n"
    		  "           of the 1st channel on the 1st HighPoint RAID controller)\n"
    		  "  smartctl --all --device=areca,3 /dev/sg2\n"
    		  "          (Prints all SMART info for 3rd ATA disk on Areca RAID controller)\n"
      ;
    
    
    /////////////////////////////////////////////////////////////////////////////
    /// Linux ATA support
    
    class linux_ata_device
    : public /*implements*/ ata_device_with_command_set,
      public /*extends*/ linux_smart_device
    {
    public:
      linux_ata_device(smart_interface * intf, const char * dev_name, const char * req_type);
    
    protected:
      virtual int ata_command_interface(smart_command_set command, int select, char * data);
    };
    
    linux_ata_device::linux_ata_device(smart_interface * intf, const char * dev_name, const char * req_type)
    : smart_device(intf, dev_name, "ata", req_type),
      linux_smart_device(O_RDONLY | O_NONBLOCK)
    {
    }
    
    // PURPOSE
    //   This is an interface routine meant to isolate the OS dependent
    //   parts of the code, and to provide a debugging interface.  Each
    //   different port and OS needs to provide it's own interface.  This
    //   is the linux one.
    // DETAILED DESCRIPTION OF ARGUMENTS
    //   device: is the file descriptor provided by open()
    //   command: defines the different operations.
    //   select: additional input data if needed (which log, which type of
    //           self-test).
    //   data:   location to write output data, if needed (512 bytes).
    //   Note: not all commands use all arguments.
    // RETURN VALUES
    //  -1 if the command failed
    //   0 if the command succeeded,
    //   STATUS_CHECK routine:
    //  -1 if the command failed
    //   0 if the command succeeded and disk SMART status is "OK"
    //   1 if the command succeeded and disk SMART status is "FAILING"
    
    
    #define BUFFER_LENGTH (4+512)
    
    int linux_ata_device::ata_command_interface(smart_command_set command, int select, char * data)
    {
      unsigned char buff[BUFFER_LENGTH];
      // positive: bytes to write to caller.  negative: bytes to READ from
      // caller. zero: non-data command
      int copydata=0;
    
      const int HDIO_DRIVE_CMD_OFFSET = 4;
    
      // See struct hd_drive_cmd_hdr in hdreg.h.  Before calling ioctl()
      // buff[0]: ATA COMMAND CODE REGISTER
      // buff[1]: ATA SECTOR NUMBER REGISTER == LBA LOW REGISTER
      // buff[2]: ATA FEATURES REGISTER
      // buff[3]: ATA SECTOR COUNT REGISTER
    
      // Note that on return:
      // buff[2] contains the ATA SECTOR COUNT REGISTER
    
      // clear out buff.  Large enough for HDIO_DRIVE_CMD (4+512 bytes)
      memset(buff, 0, BUFFER_LENGTH);
    
      buff[0]=ATA_SMART_CMD;
      switch (command){
      case CHECK_POWER_MODE:
        buff[0]=ATA_CHECK_POWER_MODE;
        copydata=1;
        break;
      case READ_VALUES:
        buff[2]=ATA_SMART_READ_VALUES;
        buff[3]=1;
        copydata=512;
        break;
      case READ_THRESHOLDS:
        buff[2]=ATA_SMART_READ_THRESHOLDS;
        buff[1]=buff[3]=1;
        copydata=512;
        break;
      case READ_LOG:
        buff[2]=ATA_SMART_READ_LOG_SECTOR;
        buff[1]=select;
        buff[3]=1;
        copydata=512;
        break;
      case WRITE_LOG:
        break;
      case IDENTIFY:
        buff[0]=ATA_IDENTIFY_DEVICE;
        buff[3]=1;
        copydata=512;
        break;
      case PIDENTIFY:
        buff[0]=ATA_IDENTIFY_PACKET_DEVICE;
        buff[3]=1;
        copydata=512;
        break;
      case ENABLE:
        buff[2]=ATA_SMART_ENABLE;
        buff[1]=1;
        break;
      case DISABLE:
        buff[2]=ATA_SMART_DISABLE;
        buff[1]=1;
        break;
      case STATUS:
        // this command only says if SMART is working.  It could be
        // replaced with STATUS_CHECK below.
        buff[2]=ATA_SMART_STATUS;
        break;
      case AUTO_OFFLINE:
        // NOTE: According to ATAPI 4 and UP, this command is obsolete
        // select == 241 for enable but no data transfer.  Use TASK ioctl.
        buff[1]=ATA_SMART_AUTO_OFFLINE;
        buff[2]=select;
        break;
      case AUTOSAVE:
        // select == 248 for enable but no data transfer.  Use TASK ioctl.
        buff[1]=ATA_SMART_AUTOSAVE;
        buff[2]=select;
        break;
      case IMMEDIATE_OFFLINE:
        buff[2]=ATA_SMART_IMMEDIATE_OFFLINE;
        buff[1]=select;
        break;
      case STATUS_CHECK:
        // This command uses HDIO_DRIVE_TASK and has different syntax than
        // the other commands.
        buff[1]=ATA_SMART_STATUS;
        break;
      default:
        pout("Unrecognized command %d in linux_ata_command_interface()\n"
             "Please contact " PACKAGE_BUGREPORT "\n", command);
        errno=ENOSYS;
        return -1;
      }
    
      // This command uses the HDIO_DRIVE_TASKFILE ioctl(). This is the
      // only ioctl() that can be used to WRITE data to the disk.
      if (command==WRITE_LOG) {
        unsigned char task[sizeof(ide_task_request_t)+512];
        ide_task_request_t *reqtask=(ide_task_request_t *) task;
        task_struct_t      *taskfile=(task_struct_t *) reqtask->io_ports;
        int retval;
    
        memset(task,      0, sizeof(task));
    
        taskfile->data           = 0;
        taskfile->feature        = ATA_SMART_WRITE_LOG_SECTOR;
        taskfile->sector_count   = 1;
        taskfile->sector_number  = select;
        taskfile->low_cylinder   = 0x4f;
        taskfile->high_cylinder  = 0xc2;
        taskfile->device_head    = 0;
        taskfile->command        = ATA_SMART_CMD;
    
        reqtask->data_phase      = TASKFILE_OUT;
        reqtask->req_cmd         = IDE_DRIVE_TASK_OUT;
        reqtask->out_size        = 512;
        reqtask->in_size         = 0;
    
        // copy user data into the task request structure
        memcpy(task+sizeof(ide_task_request_t), data, 512);
    
        if ((retval=ioctl(get_fd(), HDIO_DRIVE_TASKFILE, task))) {
          if (retval==-EINVAL)
            pout("Kernel lacks HDIO_DRIVE_TASKFILE support; compile kernel with CONFIG_IDE_TASKFILE_IO set\n");
          return -1;
        }
        return 0;
      }
    
      // There are two different types of ioctls().  The HDIO_DRIVE_TASK
      // one is this:
      if (command==STATUS_CHECK || command==AUTOSAVE || command==AUTO_OFFLINE){
        int retval;
    
        // NOT DOCUMENTED in /usr/src/linux/include/linux/hdreg.h. You
        // have to read the IDE driver source code.  Sigh.
        // buff[0]: ATA COMMAND CODE REGISTER
        // buff[1]: ATA FEATURES REGISTER
        // buff[2]: ATA SECTOR_COUNT
        // buff[3]: ATA SECTOR NUMBER
        // buff[4]: ATA CYL LO REGISTER
        // buff[5]: ATA CYL HI REGISTER
        // buff[6]: ATA DEVICE HEAD
    
        unsigned const char normal_lo=0x4f, normal_hi=0xc2;
        unsigned const char failed_lo=0xf4, failed_hi=0x2c;
        buff[4]=normal_lo;
        buff[5]=normal_hi;
    
        if ((retval=ioctl(get_fd(), HDIO_DRIVE_TASK, buff))) {
          if (retval==-EINVAL) {
            pout("Error SMART Status command via HDIO_DRIVE_TASK failed");
            pout("Rebuild older linux 2.2 kernels with HDIO_DRIVE_TASK support added\n");
          }
          else
            syserror("Error SMART Status command failed");
          return -1;
        }
    
        // Cyl low and Cyl high unchanged means "Good SMART status"
        if (buff[4]==normal_lo && buff[5]==normal_hi)
          return 0;
    
        // These values mean "Bad SMART status"
        if (buff[4]==failed_lo && buff[5]==failed_hi)
          return 1;
    
        // We haven't gotten output that makes sense; print out some debugging info
        syserror("Error SMART Status command failed");
        pout("Please get assistance from " PACKAGE_HOMEPAGE "\n");
        pout("Register values returned from SMART Status command are:\n");
        pout("ST =0x%02x\n",(int)buff[0]);
        pout("ERR=0x%02x\n",(int)buff[1]);
        pout("NS =0x%02x\n",(int)buff[2]);
        pout("SC =0x%02x\n",(int)buff[3]);
        pout("CL =0x%02x\n",(int)buff[4]);
        pout("CH =0x%02x\n",(int)buff[5]);
        pout("SEL=0x%02x\n",(int)buff[6]);
        return -1;
      }
    
    #if 1
      // Note to people doing ports to other OSes -- don't worry about
      // this block -- you can safely ignore it.  I have put it here
      // because under linux when you do IDENTIFY DEVICE to a packet
      // device, it generates an ugly kernel syslog error message.  This
      // is harmless but frightens users.  So this block detects packet
      // devices and make IDENTIFY DEVICE fail "nicely" without a syslog
      // error message.
      //
      // If you read only the ATA specs, it appears as if a packet device
      // *might* respond to the IDENTIFY DEVICE command.  This is
      // misleading - it's because around the time that SFF-8020 was
      // incorporated into the ATA-3/4 standard, the ATA authors were
      // sloppy. See SFF-8020 and you will see that ATAPI devices have
      // *always* had IDENTIFY PACKET DEVICE as a mandatory part of their
      // command set, and return 'Command Aborted' to IDENTIFY DEVICE.
      if (command==IDENTIFY || command==PIDENTIFY){
        unsigned short deviceid[256];
        // check the device identity, as seen when the system was booted
        // or the device was FIRST registered.  This will not be current
        // if the user has subsequently changed some of the parameters. If
        // device is a packet device, swap the command interpretations.
        if (!ioctl(get_fd(), HDIO_GET_IDENTITY, deviceid) && (deviceid[0] & 0x8000))
          buff[0]=(command==IDENTIFY)?ATA_IDENTIFY_PACKET_DEVICE:ATA_IDENTIFY_DEVICE;
      }
    #endif
    
      // We are now doing the HDIO_DRIVE_CMD type ioctl.
      if ((ioctl(get_fd(), HDIO_DRIVE_CMD, buff)))
        return -1;
    
      // CHECK POWER MODE command returns information in the Sector Count
      // register (buff[3]).  Copy to return data buffer.
      if (command==CHECK_POWER_MODE)
        buff[HDIO_DRIVE_CMD_OFFSET]=buff[2];
    
      // if the command returns data then copy it back
      if (copydata)
        memcpy(data, buff+HDIO_DRIVE_CMD_OFFSET, copydata);
    
      return 0;
    }
    
    // >>>>>> Start of general SCSI specific linux code
    
    /* Linux specific code.
     * Historically smartmontools (and smartsuite before it) used the
     * SCSI_IOCTL_SEND_COMMAND ioctl which is available to all linux device
     * nodes that use the SCSI subsystem. A better interface has been available
     * via the SCSI generic (sg) driver but this involves the extra step of
     * mapping disk devices (e.g. /dev/sda) to the corresponding sg device
     * (e.g. /dev/sg2). In the linux kernel 2.6 series most of the facilities of
     * the sg driver have become available via the SG_IO ioctl which is available
     * on all SCSI devices (on SCSI tape devices from lk 2.6.6).
     * So the strategy below is to find out if the SG_IO ioctl is available and
     * if so use it; failing that use the older SCSI_IOCTL_SEND_COMMAND ioctl.
     * Should work in 2.0, 2.2, 2.4 and 2.6 series linux kernels. */
    
    #define MAX_DXFER_LEN 1024      /* can be increased if necessary */
    #define SEND_IOCTL_RESP_SENSE_LEN 16    /* ioctl limitation */
    #define SG_IO_RESP_SENSE_LEN 64 /* large enough see buffer */
    #define LSCSI_DRIVER_MASK  0xf /* mask out "suggestions" */
    #define LSCSI_DRIVER_SENSE  0x8 /* alternate CHECK CONDITION indication */
    #define LSCSI_DID_ERROR 0x7 /* Need to work around aacraid driver quirk */
    #define LSCSI_DRIVER_TIMEOUT  0x6
    #define LSCSI_DID_TIME_OUT  0x3
    #define LSCSI_DID_BUS_BUSY  0x2
    #define LSCSI_DID_NO_CONNECT  0x1
    
    #ifndef SCSI_IOCTL_SEND_COMMAND
    #define SCSI_IOCTL_SEND_COMMAND 1
    #endif
    
    #define SG_IO_PRESENT_UNKNOWN 0
    #define SG_IO_PRESENT_YES 1
    #define SG_IO_PRESENT_NO 2
    
    static int sg_io_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report,
                             int unknown);
    static int sisc_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report);
    
    static int sg_io_state = SG_IO_PRESENT_UNKNOWN;
    
    /* Preferred implementation for issuing SCSI commands in linux. This
     * function uses the SG_IO ioctl. Return 0 if command issued successfully
     * (various status values should still be checked). If the SCSI command
     * cannot be issued then a negative errno value is returned. */
    static int sg_io_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report,
                             int unknown)
    {
    #ifndef SG_IO
        ARGUSED(dev_fd); ARGUSED(iop); ARGUSED(report);
        return -ENOTTY;
    #else
        struct sg_io_hdr io_hdr;
    
        if (report > 0) {
            int k, j;
            const unsigned char * ucp = iop->cmnd;
            const char * np;
            char buff[256];
            const int sz = (int)sizeof(buff);
    
            np = scsi_get_opcode_name(ucp[0]);
            j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
            for (k = 0; k < (int)iop->cmnd_len; ++k)
                j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
            if ((report > 1) &&
                (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
                int trunc = (iop->dxfer_len > 256) ? 1 : 0;
    
                j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n  Outgoing "
                              "data, len=%d%s:\n", (int)iop->dxfer_len,
                              (trunc ? " [only first 256 bytes shown]" : ""));
                dStrHex((const char *)iop->dxferp,
                        (trunc ? 256 : iop->dxfer_len) , 1);
            }
            else
                j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
            pout("%s", buff);
        }
        memset(&io_hdr, 0, sizeof(struct sg_io_hdr));
        io_hdr.interface_id = 'S';
        io_hdr.cmd_len = iop->cmnd_len;
        io_hdr.mx_sb_len = iop->max_sense_len;
        io_hdr.dxfer_len = iop->dxfer_len;
        io_hdr.dxferp = iop->dxferp;
        io_hdr.cmdp = iop->cmnd;
        io_hdr.sbp = iop->sensep;
        /* sg_io_hdr interface timeout has millisecond units. Timeout of 0
           defaults to 60 seconds. */
        io_hdr.timeout = ((0 == iop->timeout) ? 60 : iop->timeout) * 1000;
        switch (iop->dxfer_dir) {
            case DXFER_NONE:
                io_hdr.dxfer_direction = SG_DXFER_NONE;
                break;
            case DXFER_FROM_DEVICE:
                io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
                break;
            case DXFER_TO_DEVICE:
                io_hdr.dxfer_direction = SG_DXFER_TO_DEV;
                break;
            default:
                pout("do_scsi_cmnd_io: bad dxfer_dir\n");
                return -EINVAL;
        }
        iop->resp_sense_len = 0;
        iop->scsi_status = 0;
        iop->resid = 0;
        if (ioctl(dev_fd, SG_IO, &io_hdr) < 0) {
            if (report && (! unknown))
                pout("  SG_IO ioctl failed, errno=%d [%s]\n", errno,
                     strerror(errno));
            return -errno;
        }
        iop->resid = io_hdr.resid;
        iop->scsi_status = io_hdr.status;
        if (report > 0) {
            pout("  scsi_status=0x%x, host_status=0x%x, driver_status=0x%x\n"
                 "  info=0x%x  duration=%d milliseconds  resid=%d\n", io_hdr.status,
                 io_hdr.host_status, io_hdr.driver_status, io_hdr.info,
                 io_hdr.duration, io_hdr.resid);
            if (report > 1) {
                if (DXFER_FROM_DEVICE == iop->dxfer_dir) {
                    int trunc, len;
    
    		len = iop->dxfer_len - iop->resid;
    		trunc = (len > 256) ? 1 : 0;
                    if (len > 0) {
                        pout("  Incoming data, len=%d%s:\n", len,
                             (trunc ? " [only first 256 bytes shown]" : ""));
                        dStrHex((const char*)iop->dxferp, (trunc ? 256 : len),
                                1);
                    } else
                        pout("  Incoming data trimmed to nothing by resid\n");
                }
            }
        }
    
        if (io_hdr.info | SG_INFO_CHECK) { /* error or warning */
            int masked_driver_status = (LSCSI_DRIVER_MASK & io_hdr.driver_status);
    
            if (0 != io_hdr.host_status) {
                if ((LSCSI_DID_NO_CONNECT == io_hdr.host_status) ||
                    (LSCSI_DID_BUS_BUSY == io_hdr.host_status) ||
                    (LSCSI_DID_TIME_OUT == io_hdr.host_status))
                    return -ETIMEDOUT;
                else
                   /* Check for DID_ERROR - workaround for aacraid driver quirk */
                   if (LSCSI_DID_ERROR != io_hdr.host_status) {
                           return -EIO; /* catch all if not DID_ERR */
                   }
            }
            if (0 != masked_driver_status) {
                if (LSCSI_DRIVER_TIMEOUT == masked_driver_status)
                    return -ETIMEDOUT;
                else if (LSCSI_DRIVER_SENSE != masked_driver_status)
                    return -EIO;
            }
            if (LSCSI_DRIVER_SENSE == masked_driver_status)
                iop->scsi_status = SCSI_STATUS_CHECK_CONDITION;
            iop->resp_sense_len = io_hdr.sb_len_wr;
            if ((SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) &&
                iop->sensep && (iop->resp_sense_len > 0)) {
                if (report > 1) {
                    pout("  >>> Sense buffer, len=%d:\n",
                         (int)iop->resp_sense_len);
                    dStrHex((const char *)iop->sensep, iop->resp_sense_len , 1);
                }
            }
            if (report) {
                if (SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) {
                    if ((iop->sensep[0] & 0x7f) > 0x71)
                        pout("  status=%x: [desc] sense_key=%x asc=%x ascq=%x\n",
                             iop->scsi_status, iop->sensep[1] & 0xf,
                             iop->sensep[2], iop->sensep[3]);
                    else
                        pout("  status=%x: sense_key=%x asc=%x ascq=%x\n",
                             iop->scsi_status, iop->sensep[2] & 0xf,
                             iop->sensep[12], iop->sensep[13]);
                }
                else
                    pout("  status=0x%x\n", iop->scsi_status);
            }
        }
        return 0;
    #endif
    }
    
    struct linux_ioctl_send_command
    {
        int inbufsize;
        int outbufsize;
        UINT8 buff[MAX_DXFER_LEN + 16];
    };
    
    /* The Linux SCSI_IOCTL_SEND_COMMAND ioctl is primitive and it doesn't
     * support: CDB length (guesses it from opcode), resid and timeout.
     * Patches in Linux 2.4.21 and 2.5.70 to extend SEND DIAGNOSTIC timeout
     * to 2 hours in order to allow long foreground extended self tests. */
    static int sisc_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report)
    {
        struct linux_ioctl_send_command wrk;
        int status, buff_offset;
        size_t len;
    
        memcpy(wrk.buff, iop->cmnd, iop->cmnd_len);
        buff_offset = iop->cmnd_len;
        if (report > 0) {
            int k, j;
            const unsigned char * ucp = iop->cmnd;
            const char * np;
            char buff[256];
            const int sz = (int)sizeof(buff);
    
            np = scsi_get_opcode_name(ucp[0]);
            j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
            for (k = 0; k < (int)iop->cmnd_len; ++k)
                j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
            if ((report > 1) &&
                (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
                int trunc = (iop->dxfer_len > 256) ? 1 : 0;
    
                j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n  Outgoing "
                              "data, len=%d%s:\n", (int)iop->dxfer_len,
                              (trunc ? " [only first 256 bytes shown]" : ""));
                dStrHex((const char *)iop->dxferp,
                        (trunc ? 256 : iop->dxfer_len) , 1);
            }
            else
                j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
            pout("%s", buff);
        }
        switch (iop->dxfer_dir) {
            case DXFER_NONE:
                wrk.inbufsize = 0;
                wrk.outbufsize = 0;
                break;
            case DXFER_FROM_DEVICE:
                wrk.inbufsize = 0;
                if (iop->dxfer_len > MAX_DXFER_LEN)
                    return -EINVAL;
                wrk.outbufsize = iop->dxfer_len;
                break;
            case DXFER_TO_DEVICE:
                if (iop->dxfer_len > MAX_DXFER_LEN)
                    return -EINVAL;
                memcpy(wrk.buff + buff_offset, iop->dxferp, iop->dxfer_len);
                wrk.inbufsize = iop->dxfer_len;
                wrk.outbufsize = 0;
                break;
            default:
                pout("do_scsi_cmnd_io: bad dxfer_dir\n");
                return -EINVAL;
        }
        iop->resp_sense_len = 0;
        iop->scsi_status = 0;
        iop->resid = 0;
        status = ioctl(dev_fd, SCSI_IOCTL_SEND_COMMAND, &wrk);
        if (-1 == status) {
            if (report)
                pout("  SCSI_IOCTL_SEND_COMMAND ioctl failed, errno=%d [%s]\n",
                     errno, strerror(errno));
            return -errno;
        }
        if (0 == status) {
            if (report > 0)
                pout("  status=0\n");
            if (DXFER_FROM_DEVICE == iop->dxfer_dir) {
                memcpy(iop->dxferp, wrk.buff, iop->dxfer_len);
                if (report > 1) {
                    int trunc = (iop->dxfer_len > 256) ? 1 : 0;
    
                    pout("  Incoming data, len=%d%s:\n", (int)iop->dxfer_len,
                         (trunc ? " [only first 256 bytes shown]" : ""));
                    dStrHex((const char*)iop->dxferp,
                            (trunc ? 256 : iop->dxfer_len) , 1);
                }
            }
            return 0;
        }
        iop->scsi_status = status & 0x7e; /* bits 0 and 7 used to be for vendors */
        if (LSCSI_DRIVER_SENSE == ((status >> 24) & 0xf))
            iop->scsi_status = SCSI_STATUS_CHECK_CONDITION;
        len = (SEND_IOCTL_RESP_SENSE_LEN < iop->max_sense_len) ?
                    SEND_IOCTL_RESP_SENSE_LEN : iop->max_sense_len;
        if ((SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) &&
            iop->sensep && (len > 0)) {
            memcpy(iop->sensep, wrk.buff, len);
            iop->resp_sense_len = len;
            if (report > 1) {
                pout("  >>> Sense buffer, len=%d:\n", (int)len);
                dStrHex((const char *)wrk.buff, len , 1);
            }
        }
        if (report) {
            if (SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) {
                pout("  status=%x: sense_key=%x asc=%x ascq=%x\n", status & 0xff,
                     wrk.buff[2] & 0xf, wrk.buff[12], wrk.buff[13]);
            }
            else
                pout("  status=0x%x\n", status);
        }
        if (iop->scsi_status > 0)
            return 0;
        else {
            if (report > 0)
                pout("  ioctl status=0x%x but scsi status=0, fail with EIO\n",
                     status);
            return -EIO;      /* give up, assume no device there */
        }
    }
    
    /* SCSI command transmission interface function, linux version.
     * Returns 0 if SCSI command successfully launched and response
     * received. Even when 0 is returned the caller should check
     * scsi_cmnd_io::scsi_status for SCSI defined errors and warnings
     * (e.g. CHECK CONDITION). If the SCSI command could not be issued
     * (e.g. device not present or timeout) or some other problem
     * (e.g. timeout) then returns a negative errno value */
    static int do_normal_scsi_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop,
                                      int report)
    {
        int res;
    
        /* implementation relies on static sg_io_state variable. If not
         * previously set tries the SG_IO ioctl. If that succeeds assume
         * that SG_IO ioctl functional. If it fails with an errno value
         * other than ENODEV (no device) or permission then assume
         * SCSI_IOCTL_SEND_COMMAND is the only option. */
        switch (sg_io_state) {
        case SG_IO_PRESENT_UNKNOWN:
            /* ignore report argument */
            if (0 == (res = sg_io_cmnd_io(dev_fd, iop, report, 1))) {
                sg_io_state = SG_IO_PRESENT_YES;
                return 0;
            } else if ((-ENODEV == res) || (-EACCES == res) || (-EPERM == res))
                return res;         /* wait until we see a device */
            sg_io_state = SG_IO_PRESENT_NO;
            /* drop through by design */
        case SG_IO_PRESENT_NO:
            return sisc_cmnd_io(dev_fd, iop, report);
        case SG_IO_PRESENT_YES:
            return sg_io_cmnd_io(dev_fd, iop, report, 0);
        default:
            pout(">>>> do_scsi_cmnd_io: bad sg_io_state=%d\n", sg_io_state);
            sg_io_state = SG_IO_PRESENT_UNKNOWN;
            return -EIO;    /* report error and reset state */
        }
    }
    
    // >>>>>> End of general SCSI specific linux code
    
    /////////////////////////////////////////////////////////////////////////////
    /// Standard SCSI support
    
    class linux_scsi_device
    : public /*implements*/ scsi_device,
      public /*extends*/ linux_smart_device
    {
    public:
      linux_scsi_device(smart_interface * intf, const char * dev_name,
                        const char * req_type, bool scanning = false);
    
      virtual smart_device * autodetect_open();
    
      virtual bool scsi_pass_through(scsi_cmnd_io * iop);
    
    private:
      bool m_scanning; ///< true if created within scan_smart_devices
    };
    
    linux_scsi_device::linux_scsi_device(smart_interface * intf,
      const char * dev_name, const char * req_type, bool scanning /*= false*/)
    : smart_device(intf, dev_name, "scsi", req_type),
      // If opened with O_RDWR, a SATA disk in standby mode
      // may spin-up after device close().
      linux_smart_device(O_RDONLY | O_NONBLOCK),
      m_scanning(scanning)
    {
    }
    
    
    bool linux_scsi_device::scsi_pass_through(scsi_cmnd_io * iop)
    {
      int status = do_normal_scsi_cmnd_io(get_fd(), iop, con->reportscsiioctl);
      if (status < 0)
          return set_err(-status);
      return true;
    }
    
    /////////////////////////////////////////////////////////////////////////////
    /// LSI MegaRAID support
    
    class linux_megaraid_device
    : public /* implements */ scsi_device,
      public /* extends */ linux_smart_device
    {
    public:
      linux_megaraid_device(smart_interface *intf, const char *name, 
        unsigned int bus, unsigned int tgt);
    
      virtual ~linux_megaraid_device() throw();
    
      virtual smart_device * autodetect_open();
    
      virtual bool open();
      virtual bool close();
     
      virtual bool scsi_pass_through(scsi_cmnd_io *iop);
    
    private:
      unsigned int m_disknum;
      unsigned int m_busnum;
      unsigned int m_hba;
      int m_fd;
    
      bool (linux_megaraid_device::*pt_cmd)(int cdblen, void *cdb, int dataLen, void *data,
        int senseLen, void *sense, int report);
      bool megasas_cmd(int cdbLen, void *cdb, int dataLen, void *data,
        int senseLen, void *sense, int report);
      bool megadev_cmd(int cdbLen, void *cdb, int dataLen, void *data,
        int senseLen, void *sense, int report);
    };
    
    linux_megaraid_device::linux_megaraid_device(smart_interface *intf,
      const char *dev_name, unsigned int bus, unsigned int tgt)
     : smart_device(intf, dev_name, "megaraid", "megaraid"),
       linux_smart_device(O_RDWR | O_NONBLOCK),
       m_disknum(tgt), m_busnum(bus), m_hba(0),
       m_fd(-1), pt_cmd(0)
    {
      set_info().info_name = strprintf("%s [megaraid_disk_%02d]", dev_name, m_disknum);
    }
    
    linux_megaraid_device::~linux_megaraid_device() throw()
    {
      if (m_fd >= 0)
        ::close(m_fd);
    }
    
    smart_device * linux_megaraid_device::autodetect_open()
    {
      int report = con->reportscsiioctl; 
    
      // Open device
      if (!open())
        return this;
    
      // The code below is based on smartd.cpp:SCSIFilterKnown()
      if (strcmp(get_req_type(), "megaraid"))
        return this;
    
      // Get INQUIRY
      unsigned char req_buff[64] = {0, };
      int req_len = 36;
      if (scsiStdInquiry(this, req_buff, req_len)) {
          close();
          set_err(EIO, "INQUIRY failed");
          return this;
      }
    
      int avail_len = req_buff[4] + 5;
      int len = (avail_len < req_len ? avail_len : req_len);
      if (len < 36)
          return this;
    
      if (report)
        printf("Got MegaRAID inquiry.. %s\n", req_buff+8);
    
      // Use INQUIRY to detect type
      {
        // SAT or USB ?
        ata_device * newdev = smi()->autodetect_sat_device(this, req_buff, len);
        if (newdev)
          // NOTE: 'this' is now owned by '*newdev'
          return newdev;
      }
    
      // Nothing special found
      return this;
    }
    
    
    bool linux_megaraid_device::open()
    {
      char line[128];
      int   mjr, n1;
      FILE *fp;
      int report = con->reportscsiioctl; 
    
      if (!linux_smart_device::open())
        return false;
    
      /* Get device HBA */
      struct sg_scsi_id sgid;
      if (ioctl(get_fd(), SG_GET_SCSI_ID, &sgid) == 0) {
        m_hba = sgid.host_no;
      }
      else if (ioctl(get_fd(), SCSI_IOCTL_GET_BUS_NUMBER, &m_hba) != 0) {
        int err = errno;
        linux_smart_device::close();
        return set_err(err, "can't get bus number");
      }
    
      /* Perform mknod of device ioctl node */
      fp = fopen("/proc/devices", "r");
      while (fgets(line, sizeof(line), fp) != NULL) {
      	n1=0;
      	if (sscanf(line, "%d megaraid_sas_ioctl%n", &mjr, &n1) == 1 && n1 == 22) {
    	   n1=mknod("/dev/megaraid_sas_ioctl_node", S_IFCHR, makedev(mjr, 0));
    	   if(report > 0)
    	     printf("Creating /dev/megaraid_sas_ioctl_node = %d\n", n1 >= 0 ? 0 : errno);
    	   if (n1 >= 0 || errno == EEXIST)
    	      break;
    	}
    	else if (sscanf(line, "%d megadev%n", &mjr, &n1) == 1 && n1 == 11) {
    	   n1=mknod("/dev/megadev0", S_IFCHR, makedev(mjr, 0));
    	   if(report > 0)
    	     printf("Creating /dev/megadev0 = %d\n", n1 >= 0 ? 0 : errno);
    	   if (n1 >= 0 || errno == EEXIST)
    	      break;
    	}
      }
      fclose(fp);
    
      /* Open Device IOCTL node */
      if ((m_fd = ::open("/dev/megaraid_sas_ioctl_node", O_RDWR)) >= 0) {
        pt_cmd = &linux_megaraid_device::megasas_cmd;
      }
      else if ((m_fd = ::open("/dev/megadev0", O_RDWR)) >= 0) {
        pt_cmd = &linux_megaraid_device::megadev_cmd;
      }
      else {
        int err = errno;
        linux_smart_device::close();
        return set_err(err, "cannot open /dev/megaraid_sas_ioctl_node or /dev/megadev0");
      }
    
      return true;
    }
    
    bool linux_megaraid_device::close()
    {
      if (m_fd >= 0)
        ::close(m_fd);
      m_fd = -1; m_hba = 0; pt_cmd = 0;
      return linux_smart_device::close();
    }
    
    bool linux_megaraid_device::scsi_pass_through(scsi_cmnd_io *iop)
    {
      int report = con->reportscsiioctl; 
    
      if (report > 0) {
            int k, j;
            const unsigned char * ucp = iop->cmnd;
            const char * np;
            char buff[256];
            const int sz = (int)sizeof(buff);
    
            np = scsi_get_opcode_name(ucp[0]);
            j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
            for (k = 0; k < (int)iop->cmnd_len; ++k)
                j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
            if ((report > 1) &&
                (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
                int trunc = (iop->dxfer_len > 256) ? 1 : 0;
    
                j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n  Outgoing "
                              "data, len=%d%s:\n", (int)iop->dxfer_len,
                              (trunc ? " [only first 256 bytes shown]" : ""));
                dStrHex((const char *)iop->dxferp,
                        (trunc ? 256 : iop->dxfer_len) , 1);
            }
            else
                j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
            pout("%s", buff);
      }
    
      /* Controller rejects Enable SMART and Test Unit Ready */
      if (iop->cmnd[0] == 0x00)
        return true;
      if (iop->cmnd[0] == 0x85 && iop->cmnd[1] == 0x06) {
        if(report > 0)
          pout("Rejecting SMART/ATA command to controller\n");
        // Emulate SMART STATUS CHECK drive reply
        // smartctl fail to work without this
        if(iop->cmnd[2]==0x2c) {
          iop->resp_sense_len=22; // copied from real response
          iop->sensep[0]=0x72; // descriptor format
          iop->sensep[7]=0x0e; // additional length
          iop->sensep[8]=0x09; // description pointer
          iop->sensep[17]=0x4f; // low cylinder GOOD smart status
          iop->sensep[19]=0xc2; // high cylinder GOOD smart status
        }
        return true;
      }
    
      if (pt_cmd == NULL)
        return false;
      return (this->*pt_cmd)(iop->cmnd_len, iop->cmnd, 
        iop->dxfer_len, iop->dxferp,
        iop->max_sense_len, iop->sensep, report);
    }
    
    /* Issue passthrough scsi command to PERC5/6 controllers */
    bool linux_megaraid_device::megasas_cmd(int cdbLen, void *cdb, 
      int dataLen, void *data,
      int /*senseLen*/, void * /*sense*/, int /*report*/)
    {
      struct megasas_pthru_frame	*pthru;
      struct megasas_iocpacket	uio;
      int rc;
    
      memset(&uio, 0, sizeof(uio));
      pthru = (struct megasas_pthru_frame *)uio.frame.raw;
      pthru->cmd = MFI_CMD_PD_SCSI_IO;
      pthru->cmd_status = 0xFF;
      pthru->scsi_status = 0x0;
      pthru->target_id = m_disknum;
      pthru->lun = 0;
      pthru->cdb_len = cdbLen;
      pthru->timeout = 0;
      pthru->flags = MFI_FRAME_DIR_READ;
      pthru->sge_count = 1;
      pthru->data_xfer_len = dataLen;
      pthru->sgl.sge32[0].phys_addr = (intptr_t)data;
      pthru->sgl.sge32[0].length = (uint32_t)dataLen;
      memcpy(pthru->cdb, cdb, cdbLen);
    
      uio.host_no = m_hba;
      uio.sge_count = 1;
      uio.sgl_off = offsetof(struct megasas_pthru_frame, sgl);
      uio.sgl[0].iov_base = data;
      uio.sgl[0].iov_len = dataLen;
    
      rc = 0;
      errno = 0;
      rc = ioctl(m_fd, MEGASAS_IOC_FIRMWARE, &uio);
      if (pthru->cmd_status || rc != 0) {
        if (pthru->cmd_status == 12) {
          return set_err(EIO, "megasas_cmd: Device %d does not exist\n", m_disknum);
        }
        return set_err((errno ? errno : EIO), "megasas_cmd result: %d.%d = %d/%d",
                       m_hba, m_disknum, errno,
                       pthru->cmd_status);
      }
      return true;
    }
    
    /* Issue passthrough scsi commands to PERC2/3/4 controllers */
    bool linux_megaraid_device::megadev_cmd(int cdbLen, void *cdb, 
      int dataLen, void *data,
      int senseLen, void *sense, int /*report*/)
    {
      struct uioctl_t uio;
      int rc;
    
      sense = NULL;
      senseLen = 0;
    
      /* Don't issue to the controller */
      if (m_disknum == 7)
        return false;
    
      memset(&uio, 0, sizeof(uio));
      uio.inlen  = dataLen;
      uio.outlen = dataLen;
    
      memset(data, 0, dataLen);
      uio.ui.fcs.opcode = 0x80;             // M_RD_IOCTL_CMD
      uio.ui.fcs.adapno = MKADAP(m_hba);
    
      uio.data.pointer = (uint8_t *)data;
    
      uio.mbox.cmd = MEGA_MBOXCMD_PASSTHRU;
      uio.mbox.xferaddr = (intptr_t)&uio.pthru;
    
      uio.pthru.ars     = 1;
      uio.pthru.timeout = 2;
      uio.pthru.channel = 0;
      uio.pthru.target  = m_disknum;
      uio.pthru.cdblen  = cdbLen;
      uio.pthru.reqsenselen  = MAX_REQ_SENSE_LEN;
      uio.pthru.dataxferaddr = (intptr_t)data;
      uio.pthru.dataxferlen  = dataLen;
      memcpy(uio.pthru.cdb, cdb, cdbLen);
    
      rc=ioctl(m_fd, MEGAIOCCMD, &uio);
      if (uio.pthru.scsistatus || rc != 0) {
        return set_err((errno ? errno : EIO), "megadev_cmd result: %d.%d =  %d/%d",
                       m_hba, m_disknum, errno,
                       uio.pthru.scsistatus);
      }
      return true;
    }
    
    /////////////////////////////////////////////////////////////////////////////
    /// CCISS RAID support
    
    #ifdef HAVE_LINUX_CCISS_IOCTL_H
    
    class linux_cciss_device
    : public /*implements*/ scsi_device,
      public /*extends*/ linux_smart_device
    {
    public:
      linux_cciss_device(smart_interface * intf, const char * name, unsigned char disknum);
    
      virtual bool scsi_pass_through(scsi_cmnd_io * iop);
    
    private:
      unsigned char m_disknum; ///< Disk number.
    };
    
    linux_cciss_device::linux_cciss_device(smart_interface * intf,
      const char * dev_name, unsigned char disknum)
    : smart_device(intf, dev_name, "cciss", "cciss"),
      linux_smart_device(O_RDWR | O_NONBLOCK),
      m_disknum(disknum)
    {
      set_info().info_name = strprintf("%s [cciss_disk_%02d]", dev_name, disknum);
    }
    
    bool linux_cciss_device::scsi_pass_through(scsi_cmnd_io * iop)
    {
      int status = cciss_io_interface(get_fd(), m_disknum, iop, con->reportscsiioctl);
      if (status < 0)
          return set_err(-status);
      return true;
    }
    
    #endif // HAVE_LINUX_CCISS_IOCTL_H
    
    /////////////////////////////////////////////////////////////////////////////
    /// AMCC/3ware RAID support
    
    class linux_escalade_device
    : public /*implements*/ ata_device,
      public /*extends*/ linux_smart_device
    {
    public:
      enum escalade_type_t {
        AMCC_3WARE_678K,
        AMCC_3WARE_678K_CHAR,
        AMCC_3WARE_9000_CHAR
      };
    
      linux_escalade_device(smart_interface * intf, const char * dev_name,
        escalade_type_t escalade_type, int disknum);
    
      virtual bool open();
    
      virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out);
    
    private:
      escalade_type_t m_escalade_type; ///< Controller type
      int m_disknum; ///< Disk number.
    };
    
    linux_escalade_device::linux_escalade_device(smart_interface * intf, const char * dev_name,
        escalade_type_t escalade_type, int disknum)
    : smart_device(intf, dev_name, "3ware", "3ware"),
      linux_smart_device(O_RDONLY | O_NONBLOCK),
      m_escalade_type(escalade_type), m_disknum(disknum)
    {
      set_info().info_name = strprintf("%s [3ware_disk_%02d]", dev_name, disknum);
    }
    
    /* This function will setup and fix device nodes for a 3ware controller. */
    #define MAJOR_STRING_LENGTH 3
    #define DEVICE_STRING_LENGTH 32
    #define NODE_STRING_LENGTH 16
    int setup_3ware_nodes(const char *nodename, const char *driver_name) {
      int              tw_major      = 0;
      int              index         = 0;
      char             majorstring[MAJOR_STRING_LENGTH+1];
      char             device_name[DEVICE_STRING_LENGTH+1];
      char             nodestring[NODE_STRING_LENGTH];
      struct stat      stat_buf;
      FILE             *file;
      int              retval = 0;
    #ifdef WITH_SELINUX
      security_context_t orig_context = NULL;
      security_context_t node_context = NULL;
      int                selinux_enabled  = is_selinux_enabled();
      int                selinux_enforced = security_getenforce();
    #endif
    
    
      /* First try to open up /proc/devices */
      if (!(file = fopen("/proc/devices", "r"))) {
        pout("Error opening /proc/devices to check/create 3ware device nodes\n");
        syserror("fopen");
        return 0;  // don't fail here: user might not have /proc !
      }
    
      /* Attempt to get device major number */
      while (EOF != fscanf(file, "%3s %32s", majorstring, device_name)) {
        majorstring[MAJOR_STRING_LENGTH]='\0';
        device_name[DEVICE_STRING_LENGTH]='\0';
        if (!strncmp(device_name, nodename, DEVICE_STRING_LENGTH)) {
          tw_major = atoi(majorstring);
          break;
        }
      }
      fclose(file);
    
      /* See if we found a major device number */
      if (!tw_major) {
        pout("No major number for /dev/%s listed in /proc/devices. Is the %s driver loaded?\n", nodename, driver_name);
        return 2;
      }
    #ifdef WITH_SELINUX
      /* Prepare a database of contexts for files in /dev
       * and save the current context */
      if (selinux_enabled) {
        if (matchpathcon_init_prefix(NULL, "/dev") < 0)
          pout("Error initializing contexts database for /dev");
        if (getfscreatecon(&orig_context) < 0) {
          pout("Error retrieving original SELinux fscreate context");
          if (selinux_enforced)
            matchpathcon_fini();
            return 6;
          }
      }
    #endif
      /* Now check if nodes are correct */
      for (index=0; index<16; index++) {
        sprintf(nodestring, "/dev/%s%d", nodename, index);
    #ifdef WITH_SELINUX
        /* Get context of the node and set it as the default */
        if (selinux_enabled) {
          if (matchpathcon(nodestring, S_IRUSR | S_IWUSR, &node_context) < 0) {
            pout("Could not retrieve context for %s", nodestring);
            if (selinux_enforced) {
              retval = 6;
              break;
            }
          }
          if (setfscreatecon(node_context) < 0) {
            pout ("Error setting default fscreate context");
            if (selinux_enforced) {
              retval = 6;
              break;
            }
          }
        }
    #endif
        /* Try to stat the node */
        if ((stat(nodestring, &stat_buf))) {
          pout("Node %s does not exist and must be created. Check the udev rules.\n", nodestring);
          /* Create a new node if it doesn't exist */
          if (mknod(nodestring, S_IFCHR|0600, makedev(tw_major, index))) {
            pout("problem creating 3ware device nodes %s", nodestring);
            syserror("mknod");
            retval = 3;
            break;
          } else {
    #ifdef WITH_SELINUX
    	if (selinux_enabled && node_context) {
    	  freecon(node_context);
    	  node_context = NULL;
    	}
    #endif
            continue;
          }
        }
    
        /* See if nodes major and minor numbers are correct */
        if ((tw_major != (int)(major(stat_buf.st_rdev))) ||
            (index    != (int)(minor(stat_buf.st_rdev))) ||
            (!S_ISCHR(stat_buf.st_mode))) {
          pout("Node %s has wrong major/minor number and must be created anew."
              " Check the udev rules.\n", nodestring);
          /* Delete the old node */
          if (unlink(nodestring)) {
            pout("problem unlinking stale 3ware device node %s", nodestring);
            syserror("unlink");
            retval = 4;
            break;
          }
    
          /* Make a new node */
          if (mknod(nodestring, S_IFCHR|0600, makedev(tw_major, index))) {
            pout("problem creating 3ware device nodes %s", nodestring);
            syserror("mknod");
            retval = 5;
            break;
          }
        }
    #ifdef WITH_SELINUX
        if (selinux_enabled && node_context) {
          freecon(node_context);
          node_context = NULL;
        }
    #endif
      }
    
    #ifdef WITH_SELINUX
      if (selinux_enabled) {
        if(setfscreatecon(orig_context) < 0) {
          pout("Error re-setting original fscreate context");
          if (selinux_enforced)
            retval = 6;
        }
        if(orig_context)
          freecon(orig_context);
        if(node_context)
          freecon(node_context);
        matchpathcon_fini();
      }
    #endif
      return retval;
    }
    
    bool linux_escalade_device::open()
    {
      if (m_escalade_type == AMCC_3WARE_9000_CHAR || m_escalade_type == AMCC_3WARE_678K_CHAR) {
        // the device nodes for these controllers are dynamically assigned,
        // so we need to check that they exist with the correct major
        // numbers and if not, create them
        const char * node   = (m_escalade_type == AMCC_3WARE_9000_CHAR ? "twa"    : "twe"    );
        const char * driver = (m_escalade_type == AMCC_3WARE_9000_CHAR ? "3w-9xxx": "3w-xxxx");
        if (setup_3ware_nodes(node, driver))
          return set_err((errno ? errno : ENXIO), "setup_3ware_nodes(\"%s\", \"%s\") failed", node, driver);
      }
      // Continue with default open
      return linux_smart_device::open();
    }
    
    // TODO: Function no longer useful
    //void printwarning(smart_command_set command);
    
    // PURPOSE
    //   This is an interface routine meant to isolate the OS dependent
    //   parts of the code, and to provide a debugging interface.  Each
    //   different port and OS needs to provide it's own interface.  This
    //   is the linux interface to the 3ware 3w-xxxx driver.  It allows ATA
    //   commands to be passed through the SCSI driver.
    // DETAILED DESCRIPTION OF ARGUMENTS
    //   fd: is the file descriptor provided by open()
    //   disknum is the disk number (0 to 15) in the RAID array
    //   escalade_type indicates the type of controller type, and if scsi or char interface is used
    //   command: defines the different operations.
    //   select: additional input data if needed (which log, which type of
    //           self-test).
    //   data:   location to write output data, if needed (512 bytes).
    //   Note: not all commands use all arguments.
    // RETURN VALUES
    //  -1 if the command failed
    //   0 if the command succeeded,
    //   STATUS_CHECK routine:
    //  -1 if the command failed
    //   0 if the command succeeded and disk SMART status is "OK"
    //   1 if the command succeeded and disk SMART status is "FAILING"
    
    
    /* 512 is the max payload size: increase if needed */
    #define BUFFER_LEN_678K      ( sizeof(TW_Ioctl)                  ) // 1044 unpacked, 1041 packed
    #define BUFFER_LEN_678K_CHAR ( sizeof(TW_New_Ioctl)+512-1        ) // 1539 unpacked, 1536 packed
    #define BUFFER_LEN_9000      ( sizeof(TW_Ioctl_Buf_Apache)+512-1 ) // 2051 unpacked, 2048 packed
    #define TW_IOCTL_BUFFER_SIZE ( MAX(MAX(BUFFER_LEN_678K, BUFFER_LEN_9000), BUFFER_LEN_678K_CHAR) )
    
    bool linux_escalade_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out)
    {
      if (!ata_cmd_is_ok(in,
        true, // data_out_support
        false, // TODO: multi_sector_support
        true) // ata_48bit_support
      )
        return false;
    
      // Used by both the SCSI and char interfaces
      TW_Passthru *passthru=NULL;
      char ioctl_buffer[TW_IOCTL_BUFFER_SIZE];
    
      // only used for SCSI device interface
      TW_Ioctl   *tw_ioctl=NULL;
      TW_Output *tw_output=NULL;
    
      // only used for 6000/7000/8000 char device interface
      TW_New_Ioctl *tw_ioctl_char=NULL;
    
      // only used for 9000 character device interface
      TW_Ioctl_Buf_Apache *tw_ioctl_apache=NULL;
    
      memset(ioctl_buffer, 0, TW_IOCTL_BUFFER_SIZE);
    
      // TODO: Handle controller differences by different classes
      if (m_escalade_type==AMCC_3WARE_9000_CHAR) {
        tw_ioctl_apache                               = (TW_Ioctl_Buf_Apache *)ioctl_buffer;
        tw_ioctl_apache->driver_command.control_code  = TW_IOCTL_FIRMWARE_PASS_THROUGH;
        tw_ioctl_apache->driver_command.buffer_length = 512; /* payload size */
        passthru                                      = (TW_Passthru *)&(tw_ioctl_apache->firmware_command.command.oldcommand);
      }
      else if (m_escalade_type==AMCC_3WARE_678K_CHAR) {
        tw_ioctl_char                                 = (TW_New_Ioctl *)ioctl_buffer;
        tw_ioctl_char->data_buffer_length             = 512;
        passthru                                      = (TW_Passthru *)&(tw_ioctl_char->firmware_command);
      }
      else if (m_escalade_type==AMCC_3WARE_678K) {
        tw_ioctl                                      = (TW_Ioctl *)ioctl_buffer;
        tw_ioctl->cdb[0]                              = TW_IOCTL;
        tw_ioctl->opcode                              = TW_ATA_PASSTHRU;
        tw_ioctl->input_length                        = 512; // correct even for non-data commands
        tw_ioctl->output_length                       = 512; // correct even for non-data commands
        tw_output                                     = (TW_Output *)tw_ioctl;
        passthru                                      = (TW_Passthru *)&(tw_ioctl->input_data);
      }
      else {
        return set_err(ENOSYS,
          "Unrecognized escalade_type %d in linux_3ware_command_interface(disk %d)\n"
          "Please contact " PACKAGE_BUGREPORT "\n", (int)m_escalade_type, m_disknum);
      }
    
      // Same for (almost) all commands - but some reset below
      passthru->byte0.opcode  = TW_OP_ATA_PASSTHRU;
      passthru->request_id    = 0xFF;
      passthru->unit          = m_disknum;
      passthru->status        = 0;
      passthru->flags         = 0x1;
    
      // Set registers
      {
        const ata_in_regs_48bit & r = in.in_regs;
        passthru->features     = r.features_16;
        passthru->sector_count = r.sector_count_16;
        passthru->sector_num   = r.lba_low_16;
        passthru->cylinder_lo  = r.lba_mid_16;
        passthru->cylinder_hi  = r.lba_high_16;
        passthru->drive_head   = r.device;
        passthru->command      = r.command;
      }
    
      // Is this a command that reads or returns 512 bytes?
      // passthru->param values are:
      // 0x0 - non data command without TFR write check,
      // 0x8 - non data command with TFR write check,
      // 0xD - data command that returns data to host from device
      // 0xF - data command that writes data from host to device
      // passthru->size values are 0x5 for non-data and 0x07 for data
      bool readdata = false;
      if (in.direction == ata_cmd_in::data_in) {
        readdata=true;
        passthru->byte0.sgloff = 0x5;
        passthru->size         = 0x7; // TODO: Other value for multi-sector ?
        passthru->param        = 0xD;
        // For 64-bit to work correctly, up the size of the command packet
        // in dwords by 1 to account for the 64-bit single sgl 'address'
        // field. Note that this doesn't agree with the typedefs but it's
        // right (agree with kernel driver behavior/typedefs).
        if (m_escalade_type==AMCC_3WARE_9000_CHAR && sizeof(long)==8)
          passthru->size++;
      }
      else if (in.direction == ata_cmd_in::no_data) {
        // Non data command -- but doesn't use large sector
        // count register values.
        passthru->byte0.sgloff = 0x0;
        passthru->size         = 0x5;
        passthru->param        = 0x8;
        passthru->sector_count = 0x0;
      }
      else if (in.direction == ata_cmd_in::data_out) {
        if (m_escalade_type == AMCC_3WARE_9000_CHAR)
          memcpy(tw_ioctl_apache->data_buffer, in.buffer, in.size);
        else if (m_escalade_type == AMCC_3WARE_678K_CHAR)
          memcpy(tw_ioctl_char->data_buffer,   in.buffer, in.size);
        else {
          // COMMAND NOT SUPPORTED VIA SCSI IOCTL INTERFACE
          // memcpy(tw_output->output_data, data, 512);
          // printwarning(command); // TODO: Parameter no longer valid
          return set_err(ENOTSUP, "DATA OUT not supported for this 3ware controller type");
        }
        passthru->byte0.sgloff = 0x5;
        passthru->size         = 0x7;  // TODO: Other value for multi-sector ?
        passthru->param        = 0xF;  // PIO data write
        if (m_escalade_type==AMCC_3WARE_9000_CHAR && sizeof(long)==8)
          passthru->size++;
      }
      else
        return set_err(EINVAL);
    
      // Now send the command down through an ioctl()
      int ioctlreturn;
      if (m_escalade_type==AMCC_3WARE_9000_CHAR)
        ioctlreturn=ioctl(get_fd(), TW_IOCTL_FIRMWARE_PASS_THROUGH, tw_ioctl_apache);
      else if (m_escalade_type==AMCC_3WARE_678K_CHAR)
        ioctlreturn=ioctl(get_fd(), TW_CMD_PACKET_WITH_DATA, tw_ioctl_char);
      else
        ioctlreturn=ioctl(get_fd(), SCSI_IOCTL_SEND_COMMAND, tw_ioctl);
    
      // Deal with the different error cases
      if (ioctlreturn) {
        if (AMCC_3WARE_678K==m_escalade_type
            && in.in_regs.command==ATA_SMART_CMD
            && (   in.in_regs.features == ATA_SMART_AUTO_OFFLINE
                || in.in_regs.features == ATA_SMART_AUTOSAVE    )
            && in.in_regs.lba_low) {
          // error here is probably a kernel driver whose version is too old
          // printwarning(command); // TODO: Parameter no longer valid
          return set_err(ENOTSUP, "Probably kernel driver too old");
        }
        return set_err(EIO);
      }
    
      // The passthru structure is valid after return from an ioctl if:
      // - we are using the character interface OR
      // - we are using the SCSI interface and this is a NON-READ-DATA command
      // For SCSI interface, note that we set passthru to a different
      // value after ioctl().
      if (AMCC_3WARE_678K==m_escalade_type) {
        if (readdata)
          passthru=NULL;
        else
          passthru=(TW_Passthru *)&(tw_output->output_data);
      }
    
      // See if the ATA command failed.  Now that we have returned from
      // the ioctl() call, if passthru is valid, then:
      // - passthru->status contains the 3ware controller STATUS
      // - passthru->command contains the ATA STATUS register
      // - passthru->features contains the ATA ERROR register
      //
      // Check bits 0 (error bit) and 5 (device fault) of the ATA STATUS
      // If bit 0 (error bit) is set, then ATA ERROR register is valid.
      // While we *might* decode the ATA ERROR register, at the moment it
      // doesn't make much sense: we don't care in detail why the error
      // happened.
    
      if (passthru && (passthru->status || (passthru->command & 0x21))) {
        return set_err(EIO);
      }
    
      // If this is a read data command, copy data to output buffer
      if (readdata) {
        if (m_escalade_type==AMCC_3WARE_9000_CHAR)
          memcpy(in.buffer, tw_ioctl_apache->data_buffer, in.size);
        else if (m_escalade_type==AMCC_3WARE_678K_CHAR)
          memcpy(in.buffer, tw_ioctl_char->data_buffer, in.size);
        else
          memcpy(in.buffer, tw_output->output_data, in.size);
      }
    
      // Return register values
      if (passthru) {
        ata_out_regs_48bit & r = out.out_regs;
        r.error           = passthru->features;
        r.sector_count_16 = passthru->sector_count;
        r.lba_low_16      = passthru->sector_num;
        r.lba_mid_16      = passthru->cylinder_lo;
        r.lba_high_16     = passthru->cylinder_hi;
        r.device          = passthru->drive_head;
        r.status          = passthru->command;
      }
    
      // look for nonexistent devices/ports
      if (   in.in_regs.command == ATA_IDENTIFY_DEVICE
          && !nonempty(in.buffer, in.size)) {
        return set_err(ENODEV, "No drive on port %d", m_disknum);
      }
    
      return true;
    }
    
    
    /////////////////////////////////////////////////////////////////////////////
    /// Areca RAID support
    
    class linux_areca_device
    : public /*implements*/ ata_device_with_command_set,
      public /*extends*/ linux_smart_device
    {
    public:
      linux_areca_device(smart_interface * intf, const char * dev_name, int disknum);
    
    protected:
      virtual int ata_command_interface(smart_command_set command, int select, char * data);
    
    private:
      int m_disknum; ///< Disk number.
    };
    
    
    // PURPOSE
    //   This is an interface routine meant to isolate the OS dependent
    //   parts of the code, and to provide a debugging interface.  Each
    //   different port and OS needs to provide it's own interface.  This
    //   is the linux interface to the Areca "arcmsr" driver.  It allows ATA
    //   commands to be passed through the SCSI driver.
    // DETAILED DESCRIPTION OF ARGUMENTS
    //   fd: is the file descriptor provided by open()
    //   disknum is the disk number (0 to 15) in the RAID array
    //   command: defines the different operations.
    //   select: additional input data if needed (which log, which type of
    //           self-test).
    //   data:   location to write output data, if needed (512 bytes).
    //   Note: not all commands use all arguments.
    // RETURN VALUES
    //  -1 if the command failed
    //   0 if the command succeeded,
    //   STATUS_CHECK routine: 
    //  -1 if the command failed
    //   0 if the command succeeded and disk SMART status is "OK"
    //   1 if the command succeeded and disk SMART status is "FAILING"
    
    
    /*DeviceType*/
    #define ARECA_SATA_RAID                      	0x90000000
    /*FunctionCode*/
    #define FUNCTION_READ_RQBUFFER               	0x0801
    #define FUNCTION_WRITE_WQBUFFER              	0x0802
    #define FUNCTION_CLEAR_RQBUFFER              	0x0803
    #define FUNCTION_CLEAR_WQBUFFER              	0x0804
    
    /* ARECA IO CONTROL CODE*/
    #define ARCMSR_IOCTL_READ_RQBUFFER           	(ARECA_SATA_RAID | FUNCTION_READ_RQBUFFER)
    #define ARCMSR_IOCTL_WRITE_WQBUFFER          	(ARECA_SATA_RAID | FUNCTION_WRITE_WQBUFFER)
    #define ARCMSR_IOCTL_CLEAR_RQBUFFER          	(ARECA_SATA_RAID | FUNCTION_CLEAR_RQBUFFER)
    #define ARCMSR_IOCTL_CLEAR_WQBUFFER          	(ARECA_SATA_RAID | FUNCTION_CLEAR_WQBUFFER)
    #define ARECA_SIG_STR							"ARCMSR"
    
    // The SRB_IO_CONTROL & SRB_BUFFER structures are used to communicate(to/from) to areca driver
    typedef struct _SRB_IO_CONTROL
    {
    	unsigned int HeaderLength;
    	unsigned char Signature[8];
    	unsigned int Timeout;
    	unsigned int ControlCode;
    	unsigned int ReturnCode;
    	unsigned int Length;
    } sSRB_IO_CONTROL;
    
    typedef struct _SRB_BUFFER
    {
    	sSRB_IO_CONTROL srbioctl;
    	unsigned char   ioctldatabuffer[1032]; // the buffer to put the command data to/from firmware
    } sSRB_BUFFER;
    
    // Looks in /proc/scsi to suggest correct areca devices
    // If hint not NULL, return device path guess
    int find_areca_in_proc(char *hint) {
     
        const char* proc_format_string="host\tchan\tid\tlun\ttype\topens\tqdepth\tbusy\tonline\n";
    
        // check data formwat
        FILE *fp=fopen("/proc/scsi/sg/device_hdr", "r");
        if (!fp) {
            pout("Unable to open /proc/scsi/sg/device_hdr for reading\n");
            return 1;
         }
    
         // get line, compare to format
         char linebuf[256];
         linebuf[255]='\0';
         char *out = fgets(linebuf, 256, fp);
         fclose(fp);
         if (!out) {
             pout("Unable to read contents of /proc/scsi/sg/device_hdr\n");
             return 2;
         }
    
         if (strcmp(linebuf, proc_format_string)) {
         	// wrong format!
    	// Fix this by comparing only tokens not white space!!
    	pout("Unexpected format %s in /proc/scsi/sg/device_hdr\n", proc_format_string);
    	return 3;
         }
    
        // Format is understood, now search for correct device
        fp=fopen("/proc/scsi/sg/devices", "r");
        if (!fp) return 1;
        int host, chan, id, lun, type, opens, qdepth, busy, online;
        int dev=-1;
        int found=0;
        // search all lines of /proc/scsi/sg/devices
        while (9 == fscanf(fp, "%d %d %d %d %d %d %d %d %d", &host, &chan, &id, &lun, &type, &opens, &qdepth, &busy, &online)) {
            dev++;
    	if (id == 16 && type == 3) {
    	   // devices with id=16 and type=3 might be Areca controllers
    	   if (!found && hint) {
    	       sprintf(hint, "/dev/sg%d", dev);
    	   }
    	   pout("Device /dev/sg%d appears to be an Areca controller.\n", dev);
               found++;
            }
        }
        fclose(fp);
        return 0;
    }
    
    
    
    void dumpdata( unsigned char *block, int len)
    {
    	int ln = (len / 16) + 1;	 // total line#
    	unsigned char c;
    	int pos = 0;
    
    	printf(" Address = %p, Length = (0x%x)%d\n", block, len, len);
    	printf("      0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F      ASCII      \n");
    	printf("=====================================================================\n");
    
    	for ( int l = 0; l < ln && len; l++ )
    	{
    		// printf the line# and the HEX data
    		// if a line data length < 16 then append the space to the tail of line to reach 16 chars
    		printf("%02X | ", l);
    		for ( pos = 0; pos < 16 && len; pos++, len-- )
    		{
    			c = block[l*16+pos];    
    			printf("%02X ", c);
    		}
    
    		if ( pos < 16 )
    		{
    			for ( int loop = pos; loop < 16; loop++ )
    			{
    				printf("   ");
    			}
    		}
    
    		// print ASCII char
    		for ( int loop = 0; loop < pos; loop++ )
    		{
    			c = block[l*16+loop];
    			if ( c >= 0x20 && c <= 0x7F )
    			{
    				printf("%c", c);
    			}
    			else
    			{
    				printf(".");
    			}
    		}
    		printf("\n");
    	}   
    	printf("=====================================================================\n");
    }
    
    
    
    int arcmsr_command_handler(int fd, unsigned long arcmsr_cmd, unsigned char *data, int data_len, void *ext_data /* reserved for further use */)
    {
    	ARGUSED(ext_data);
    
    	int ioctlreturn = 0;
    	sSRB_BUFFER sBuf;
    	struct scsi_cmnd_io io_hdr;  
    	int dir = DXFER_TO_DEVICE;
    
    	UINT8 cdb[10];
    	UINT8 sense[32];
    
    	unsigned char *areca_return_packet;
    	int total = 0;
    	int expected = -1;
    	unsigned char return_buff[2048];
    	unsigned char *ptr = &return_buff[0];
    	memset(return_buff, 0, sizeof(return_buff));
    
    	memset((unsigned char *)&sBuf, 0, sizeof(sBuf));
    	memset(&io_hdr, 0, sizeof(io_hdr));
    	memset(cdb, 0, sizeof(cdb));
    	memset(sense, 0, sizeof(sense));
    
    
    	sBuf.srbioctl.HeaderLength = sizeof(sSRB_IO_CONTROL);   
    	memcpy(sBuf.srbioctl.Signature, ARECA_SIG_STR, strlen(ARECA_SIG_STR));
    	sBuf.srbioctl.Timeout = 10000;      
    	sBuf.srbioctl.ControlCode = ARCMSR_IOCTL_READ_RQBUFFER;
    
    	switch ( arcmsr_cmd )
    	{
    	// command for writing data to driver
    	case ARCMSR_IOCTL_WRITE_WQBUFFER:   
    		if ( data && data_len )
    		{
    			sBuf.srbioctl.Length = data_len;    
    			memcpy((unsigned char *)sBuf.ioctldatabuffer, (unsigned char *)data, data_len);
    		}
    		// commands for clearing related buffer of driver
    	case ARCMSR_IOCTL_CLEAR_RQBUFFER:
    	case ARCMSR_IOCTL_CLEAR_WQBUFFER:
    		cdb[0] = 0x3B; //SCSI_WRITE_BUF command;
    		break;
    		// command for reading data from driver
    	case ARCMSR_IOCTL_READ_RQBUFFER:    
    		cdb[0] = 0x3C; //SCSI_READ_BUF command;
    		dir = DXFER_FROM_DEVICE;
    		break;
    	default:
    		// unknown arcmsr commands
    		return -1;
    	}
    
    	cdb[1] = 0x01;
    	cdb[2] = 0xf0;    
    	//
    	// cdb[5][6][7][8] areca defined command code( to/from driver )
    	//    
    	cdb[5] = (char)( arcmsr_cmd >> 24);
    	cdb[6] = (char)( arcmsr_cmd >> 16);
    	cdb[7] = (char)( arcmsr_cmd >> 8);
    	cdb[8] = (char)( arcmsr_cmd & 0x0F );
    
    	io_hdr.dxfer_dir = dir;
    	io_hdr.dxfer_len = sizeof(sBuf);
    	io_hdr.dxferp = (unsigned char *)&sBuf;  
    	io_hdr.cmnd = cdb;
    	io_hdr.cmnd_len = sizeof(cdb);
    	io_hdr.sensep = sense;  
    	io_hdr.max_sense_len = sizeof(sense);
    	io_hdr.timeout = SCSI_TIMEOUT_DEFAULT;
    
    	while ( 1 )
    	{
    		ioctlreturn = do_normal_scsi_cmnd_io(fd, &io_hdr, 0);
    		if ( ioctlreturn || io_hdr.scsi_status )
    		{
    			// errors found
    			break;
    		}
    
    		if ( arcmsr_cmd != ARCMSR_IOCTL_READ_RQBUFFER )
    		{
    			// if succeeded, just returns the length of outgoing data
    			return data_len;
    		}
    
    		if ( sBuf.srbioctl.Length )
    		{
    			//dumpdata(&sBuf.ioctldatabuffer[0], sBuf.srbioctl.Length);
    			memcpy(ptr, &sBuf.ioctldatabuffer[0], sBuf.srbioctl.Length);
    			ptr += sBuf.srbioctl.Length;
    			total += sBuf.srbioctl.Length;
    			// the returned bytes enough to compute payload length ?
    			if ( expected < 0 && total >= 5 )
    			{
    				areca_return_packet = (unsigned char *)&return_buff[0];
    				if ( areca_return_packet[0] == 0x5E && 
    					 areca_return_packet[1] == 0x01 && 
    					 areca_return_packet[2] == 0x61 )
    				{
    					// valid header, let's compute the returned payload length,
    					// we expected the total length is 
    					// payload + 3 bytes header + 2 bytes length + 1 byte checksum
    					expected = areca_return_packet[4] * 256 + areca_return_packet[3] + 6;
    				}
    			}
    
    			if ( total >= 7 && total >= expected )
    			{
    				//printf("total bytes received = %d, expected length = %d\n", total, expected);
    
    				// ------ Okay! we received enough --------
    				break;
    			}
    		}
    	}
    
    	// Deal with the different error cases
    	if ( ioctlreturn )
    	{
    		printf("do_scsi_cmnd_io with write buffer failed code = %x\n", ioctlreturn);
    		return -2;
    	}
    
    
    	if ( io_hdr.scsi_status )
    	{
    		printf("io_hdr.scsi_status with write buffer failed code = %x\n", io_hdr.scsi_status);
    		return -3;
    	}
    
    
    	if ( data )
    	{
    		memcpy(data, return_buff, total);
    	}
    
    	return total;
    }
    
    
    linux_areca_device::linux_areca_device(smart_interface * intf, const char * dev_name, int disknum)
    : smart_device(intf, dev_name, "areca", "areca"),
      linux_smart_device(O_RDWR | O_EXCL | O_NONBLOCK),
      m_disknum(disknum)
    {
      set_info().info_name = strprintf("%s [areca_%02d]", dev_name, disknum);
    }
    
    // Areca RAID Controller
    int linux_areca_device::ata_command_interface(smart_command_set command, int select, char * data)
    {
    	// ATA input registers
    	typedef struct _ATA_INPUT_REGISTERS
    	{
    		unsigned char features;
    		unsigned char sector_count;
    		unsigned char sector_number;
    		unsigned char cylinder_low; 
    		unsigned char cylinder_high;    
    		unsigned char device_head;  
    		unsigned char command;      
    		unsigned char reserved[8];
    		unsigned char data[512]; // [in/out] buffer for outgoing/incoming data
    	} sATA_INPUT_REGISTERS;
    
    	// ATA output registers
    	// Note: The output registers is re-sorted for areca internal use only
    	typedef struct _ATA_OUTPUT_REGISTERS
    	{
    		unsigned char error;
    		unsigned char status;
    		unsigned char sector_count;
    		unsigned char sector_number;
    		unsigned char cylinder_low; 
    		unsigned char cylinder_high;
    	}sATA_OUTPUT_REGISTERS;
    
    	// Areca packet format for outgoing:
    	// B[0~2] : 3 bytes header, fixed value 0x5E, 0x01, 0x61
    	// B[3~4] : 2 bytes command length + variant data length, little endian
    	// B[5]   : 1 bytes areca defined command code, ATA passthrough command code is 0x1c
    	// B[6~last-1] : variant bytes payload data
    	// B[last] : 1 byte checksum, simply sum(B[3] ~ B[last -1])
    	// 
    	// 
    	//   header 3 bytes  length 2 bytes   cmd 1 byte    payload data x bytes  cs 1 byte 
    	// +--------------------------------------------------------------------------------+
    	// + 0x5E 0x01 0x61 |   0x00 0x00   |     0x1c   | .................... |   0x00    |
    	// +--------------------------------------------------------------------------------+
    	// 
    
    	//Areca packet format for incoming:
    	// B[0~2] : 3 bytes header, fixed value 0x5E, 0x01, 0x61
    	// B[3~4] : 2 bytes payload length, little endian
    	// B[5~last-1] : variant bytes returned payload data
    	// B[last] : 1 byte checksum, simply sum(B[3] ~ B[last -1])
    	// 
    	// 
    	//   header 3 bytes  length 2 bytes   payload data x bytes  cs 1 byte 
    	// +-------------------------------------------------------------------+
    	// + 0x5E 0x01 0x61 |   0x00 0x00   | .................... |   0x00    |
    	// +-------------------------------------------------------------------+
    	unsigned char    areca_packet[640];
    	int areca_packet_len = sizeof(areca_packet);
    	unsigned char cs = 0;	
    
    	sATA_INPUT_REGISTERS *ata_cmd;
    
    	// For debugging
    #if 0
    	memset(sInq, 0, sizeof(sInq));
    	scsiStdInquiry(fd, (unsigned char *)sInq, (int)sizeof(sInq));
    	dumpdata((unsigned char *)sInq, sizeof(sInq));
    #endif
    	memset(areca_packet, 0, areca_packet_len);
    
    	// ----- BEGIN TO SETUP HEADERS -------
    	areca_packet[0] = 0x5E;
    	areca_packet[1] = 0x01;
    	areca_packet[2] = 0x61;
    	areca_packet[3] = (unsigned char)((areca_packet_len - 6) & 0xff);
    	areca_packet[4] = (unsigned char)(((areca_packet_len - 6) >> 8) & 0xff);
    	areca_packet[5] = 0x1c;	// areca defined code for ATA passthrough command
    
    
    	// ----- BEGIN TO SETUP PAYLOAD DATA -----
    
    	memcpy(&areca_packet[7], "SmrT", 4);	// areca defined password
    
    	ata_cmd = (sATA_INPUT_REGISTERS *)&areca_packet[12];
    	ata_cmd->cylinder_low    = 0x4F;
    	ata_cmd->cylinder_high   = 0xC2;
    
    
    	if ( command == READ_VALUES     ||
    		 command == READ_THRESHOLDS ||
    		 command == READ_LOG ||
    		 command == IDENTIFY ||
    		 command == PIDENTIFY )
    	{
    		// the commands will return data
    		areca_packet[6] = 0x13;
    		ata_cmd->sector_count = 0x1;
    	}
    	else if ( command == WRITE_LOG )
    	{
    		// the commands will write data
    		areca_packet[6] = 0x14;
    	}
    	else
    	{
    		// the commands will return no data
    		areca_packet[6] = 0x15;
    	}
    
    
    	ata_cmd->command = ATA_SMART_CMD;
    	// Now set ATA registers depending upon command
    	switch ( command )
    	{
    	case CHECK_POWER_MODE:  
    		//printf("command = CHECK_POWER_MODE\n");
    		ata_cmd->command = ATA_CHECK_POWER_MODE;        
    		break;
    	case READ_VALUES:
    		//printf("command = READ_VALUES\n");
    		ata_cmd->features = ATA_SMART_READ_VALUES;
    		break;
    	case READ_THRESHOLDS:    
    		//printf("command = READ_THRESHOLDS\n");
    		ata_cmd->features = ATA_SMART_READ_THRESHOLDS;
    		break;
    	case READ_LOG: 
    		//printf("command = READ_LOG\n");
    		ata_cmd->features = ATA_SMART_READ_LOG_SECTOR;
    		ata_cmd->sector_number = select;        
    		break;
    	case WRITE_LOG:        
    		//printf("command = WRITE_LOG\n");    
    		ata_cmd->features = ATA_SMART_WRITE_LOG_SECTOR;
    		memcpy(ata_cmd->data, data, 512);
    		ata_cmd->sector_count = 1;
    		ata_cmd->sector_number = select;
    		break;
    	case IDENTIFY:
    		//printf("command = IDENTIFY\n");   
    		ata_cmd->command = ATA_IDENTIFY_DEVICE;         
    		break;
    	case PIDENTIFY:
    		//printf("command = PIDENTIFY\n");
    		errno=ENODEV;
    		return -1;
    	case ENABLE:
    		//printf("command = ENABLE\n");
    		ata_cmd->features = ATA_SMART_ENABLE;
    		break;
    	case DISABLE:
    		//printf("command = DISABLE\n");
    		ata_cmd->features = ATA_SMART_DISABLE;
    		break;
    	case AUTO_OFFLINE:
    		//printf("command = AUTO_OFFLINE\n");
    		ata_cmd->features = ATA_SMART_AUTO_OFFLINE;
    		// Enable or disable?
    		ata_cmd->sector_count = select;
    		break;
    	case AUTOSAVE:
    		//printf("command = AUTOSAVE\n");
    		ata_cmd->features = ATA_SMART_AUTOSAVE;
    		// Enable or disable?
    		ata_cmd->sector_count = select;
    		break;
    	case IMMEDIATE_OFFLINE:
    		//printf("command = IMMEDIATE_OFFLINE\n");
    		ata_cmd->features = ATA_SMART_IMMEDIATE_OFFLINE;
    		// What test type to run?
    		ata_cmd->sector_number = select;
    		break;
    	case STATUS_CHECK:
    		//printf("command = STATUS_CHECK\n");
    		ata_cmd->features = ATA_SMART_STATUS;           
    		break;
    	case STATUS:
    		//printf("command = STATUS\n");
    		ata_cmd->features = ATA_SMART_STATUS;       
    		break;
    	default:
    		//printf("command = UNKNOWN\n");
    		errno=ENOSYS;
    		return -1;
    	};
    
    	areca_packet[11] = m_disknum - 1;		   // drive number
    
    	// ----- BEGIN TO SETUP CHECKSUM -----
    	for ( int loop = 3; loop < areca_packet_len - 1; loop++ )
    	{
    		cs += areca_packet[loop]; 
    	}
    	areca_packet[areca_packet_len-1] = cs;
    
    	// ----- BEGIN TO SEND TO ARECA DRIVER ------
    	int expected = 0;	
    	unsigned char return_buff[2048];
    	memset(return_buff, 0, sizeof(return_buff));
    
    	expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_CLEAR_RQBUFFER, NULL, 0, NULL);
            if (expected==-3) {
    	    find_areca_in_proc(NULL);
    	    return -1;
    	}
    
    	expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_CLEAR_WQBUFFER, NULL, 0, NULL);
    	expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_WRITE_WQBUFFER, areca_packet, areca_packet_len, NULL);
    	if ( expected > 0 )
    	{
    		expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_READ_RQBUFFER, return_buff, sizeof(return_buff), NULL);
    	}
    	if ( expected < 0 )
    	{
    		return -1;
    	}
    
    	// ----- VERIFY THE CHECKSUM -----
    	cs = 0;
    	for ( int loop = 3; loop < expected - 1; loop++ )
    	{
    		cs += return_buff[loop]; 
    	}
    
    	if ( return_buff[expected - 1] != cs )
    	{
    		errno = EIO;
    		return -1;
    	}
    
    	sATA_OUTPUT_REGISTERS *ata_out = (sATA_OUTPUT_REGISTERS *)&return_buff[5] ;
    	if ( ata_out->status )
    	{
    		if ( command == IDENTIFY )
    		{
    			pout("The firmware of your Areca RAID controller appears to be outdated!\n" \
    				 "Please update your controller to firmware version 1.46 or later.\n" \
    				 "You may download it here: ftp://ftp.areca.com.tw/RaidCards/BIOS_Firmware\n\n");
    		}
    		errno = EIO;
    		return -1;
    	}
    
    	// returns with data
    	if ( command == READ_VALUES     ||
    		 command == READ_THRESHOLDS ||
    		 command == READ_LOG ||
    		 command == IDENTIFY ||
    		 command == PIDENTIFY )
    	{
    		memcpy(data, &return_buff[7], 512); 
    	}
    
    	if ( command == CHECK_POWER_MODE )
    	{
    		data[0] = ata_out->sector_count;
    	}
    
    	if ( command == STATUS_CHECK &&
    		 ( ata_out->cylinder_low == 0xF4 && ata_out->cylinder_high == 0x2C ) )
    	{
    		return 1;
    	}
    
    	return 0;
    }
    
    
    /////////////////////////////////////////////////////////////////////////////
    /// Marvell support
    
    class linux_marvell_device
    : public /*implements*/ ata_device_with_command_set,
      public /*extends*/ linux_smart_device
    {
    public:
      linux_marvell_device(smart_interface * intf, const char * dev_name, const char * req_type);
    
    protected:
      virtual int ata_command_interface(smart_command_set command, int select, char * data);
    };
    
    linux_marvell_device::linux_marvell_device(smart_interface * intf,
      const char * dev_name, const char * req_type)
    : smart_device(intf, dev_name, "marvell", req_type),
      linux_smart_device(O_RDONLY | O_NONBLOCK)
    {
    }
    
    int linux_marvell_device::ata_command_interface(smart_command_set command, int select, char * data)
    {
      typedef struct {
        int  inlen;
        int  outlen;
        char cmd[540];
      } mvsata_scsi_cmd;
    
      int copydata = 0;
      mvsata_scsi_cmd  smart_command;
      unsigned char *buff = (unsigned char *)&smart_command.cmd[6];
      // See struct hd_drive_cmd_hdr in hdreg.h
      // buff[0]: ATA COMMAND CODE REGISTER
      // buff[1]: ATA SECTOR NUMBER REGISTER
      // buff[2]: ATA FEATURES REGISTER
      // buff[3]: ATA SECTOR COUNT REGISTER
    
      // clear out buff.  Large enough for HDIO_DRIVE_CMD (4+512 bytes)
      memset(&smart_command, 0, sizeof(smart_command));
      smart_command.inlen = 540;
      smart_command.outlen = 540;
      smart_command.cmd[0] = 0xC;  //Vendor-specific code
      smart_command.cmd[4] = 6;     //command length
    
      buff[0] = ATA_SMART_CMD;
      switch (command){
      case CHECK_POWER_MODE:
        buff[0]=ATA_CHECK_POWER_MODE;
        break;
      case READ_VALUES:
        buff[2]=ATA_SMART_READ_VALUES;
        copydata=buff[3]=1;
        break;
      case READ_THRESHOLDS:
        buff[2]=ATA_SMART_READ_THRESHOLDS;
        copydata=buff[1]=buff[3]=1;
        break;
      case READ_LOG:
        buff[2]=ATA_SMART_READ_LOG_SECTOR;
        buff[1]=select;
        copydata=buff[3]=1;
        break;
      case IDENTIFY:
        buff[0]=ATA_IDENTIFY_DEVICE;
        copydata=buff[3]=1;
        break;
      case PIDENTIFY:
        buff[0]=ATA_IDENTIFY_PACKET_DEVICE;
        copydata=buff[3]=1;
        break;
      case ENABLE:
        buff[2]=ATA_SMART_ENABLE;
        buff[1]=1;
        break;
      case DISABLE:
        buff[2]=ATA_SMART_DISABLE;
        buff[1]=1;
        break;
      case STATUS:
      case STATUS_CHECK:
        // this command only says if SMART is working.  It could be
        // replaced with STATUS_CHECK below.
        buff[2] = ATA_SMART_STATUS;
        break;
      case AUTO_OFFLINE:
        buff[2]=ATA_SMART_AUTO_OFFLINE;
        buff[3]=select;   // YET NOTE - THIS IS A NON-DATA COMMAND!!
        break;
      case AUTOSAVE:
        buff[2]=ATA_SMART_AUTOSAVE;
        buff[3]=select;   // YET NOTE - THIS IS A NON-DATA COMMAND!!
        break;
      case IMMEDIATE_OFFLINE:
        buff[2]=ATA_SMART_IMMEDIATE_OFFLINE;
        buff[1]=select;
        break;
      default:
        pout("Unrecognized command %d in mvsata_os_specific_handler()\n", command);
        EXIT(1);
        break;
      }
      // There are two different types of ioctls().  The HDIO_DRIVE_TASK
      // one is this:
      // We are now doing the HDIO_DRIVE_CMD type ioctl.
      if (ioctl(get_fd(), SCSI_IOCTL_SEND_COMMAND, (void *)&smart_command))
          return -1;
    
      if (command==CHECK_POWER_MODE) {
        // LEON -- CHECK THIS PLEASE.  THIS SHOULD BE THE SECTOR COUNT
        // REGISTER, AND IT MIGHT BE buff[2] NOT buff[3].  Bruce
        data[0]=buff[3];
        return 0;
      }
    
      // Always succeed on a SMART status, as a disk that failed returned
      // buff[4]=0xF4, buff[5]=0x2C, i.e. "Bad SMART status" (see below).
      if (command == STATUS)
        return 0;
      //Data returned is starting from 0 offset
      if (command == STATUS_CHECK)
      {
        // Cyl low and Cyl high unchanged means "Good SMART status"
        if (buff[4] == 0x4F && buff[5] == 0xC2)
          return 0;
        // These values mean "Bad SMART status"
        if (buff[4] == 0xF4 && buff[5] == 0x2C)
          return 1;
        // We haven't gotten output that makes sense; print out some debugging info
        syserror("Error SMART Status command failed");
        pout("Please get assistance from %s\n",PACKAGE_BUGREPORT);
        pout("Register values returned from SMART Status command are:\n");
        pout("CMD =0x%02x\n",(int)buff[0]);
        pout("FR =0x%02x\n",(int)buff[1]);
        pout("NS =0x%02x\n",(int)buff[2]);
        pout("SC =0x%02x\n",(int)buff[3]);
        pout("CL =0x%02x\n",(int)buff[4]);
        pout("CH =0x%02x\n",(int)buff[5]);
        pout("SEL=0x%02x\n",(int)buff[6]);
        return -1;
      }
    
      if (copydata)
        memcpy(data, buff, 512);
      return 0;
    }
    
    
    /////////////////////////////////////////////////////////////////////////////
    /// Highpoint RAID support
    
    class linux_highpoint_device
    : public /*implements*/ ata_device_with_command_set,
      public /*extends*/ linux_smart_device
    {
    public:
      linux_highpoint_device(smart_interface * intf, const char * dev_name,
        unsigned char controller, unsigned char channel, unsigned char port);
    
    protected:
      virtual int ata_command_interface(smart_command_set command, int select, char * data);
    
    private:
      unsigned char m_hpt_data[3]; ///< controller/channel/port
    };
    
    linux_highpoint_device::linux_highpoint_device(smart_interface * intf, const char * dev_name,
      unsigned char controller, unsigned char channel, unsigned char port)
    : smart_device(intf, dev_name, "hpt", "hpt"),
      linux_smart_device(O_RDONLY | O_NONBLOCK)
    {
      m_hpt_data[0] = controller; m_hpt_data[1] = channel; m_hpt_data[2] = port;
      set_info().info_name = strprintf("%s [hpt_disk_%u/%u/%u]", dev_name, m_hpt_data[0], m_hpt_data[1], m_hpt_data[2]);
    }
    
    // this implementation is derived from ata_command_interface with a header
    // packing for highpoint linux driver ioctl interface
    //
    // ioctl(fd,HPTIO_CTL,buff)
    //          ^^^^^^^^^
    //
    // structure of hpt_buff
    // +----+----+----+----+--------------------.....---------------------+
    // | 1  | 2  | 3  | 4  | 5                                            |
    // +----+----+----+----+--------------------.....---------------------+
    //
    // 1: The target controller                     [ int    ( 4 Bytes ) ]
    // 2: The channel of the target controllee      [ int    ( 4 Bytes ) ]
    // 3: HDIO_ ioctl call                          [ int    ( 4 Bytes ) ]
    //    available from ${LINUX_KERNEL_SOURCE}/Documentation/ioctl/hdio
    // 4: the pmport that disk attached,            [ int    ( 4 Bytes ) ]
    //    if no pmport device, set to 1 or leave blank
    // 5: data                                      [ void * ( var leangth ) ]
    //
    #define STRANGE_BUFFER_LENGTH (4+512*0xf8)
    
    int linux_highpoint_device::ata_command_interface(smart_command_set command, int select, char * data)
    {
      unsigned char hpt_buff[4*sizeof(int) + STRANGE_BUFFER_LENGTH];
      unsigned int *hpt = (unsigned int *)hpt_buff;
      unsigned char *buff = &hpt_buff[4*sizeof(int)];
      int copydata = 0;
      const int HDIO_DRIVE_CMD_OFFSET = 4;
    
      memset(hpt_buff, 0, 4*sizeof(int) + STRANGE_BUFFER_LENGTH);
      hpt[0] = m_hpt_data[0]; // controller id
      hpt[1] = m_hpt_data[1]; // channel number
      hpt[3] = m_hpt_data[2]; // pmport number
    
      buff[0]=ATA_SMART_CMD;
      switch (command){
      case CHECK_POWER_MODE:
        buff[0]=ATA_CHECK_POWER_MODE;
        copydata=1;
        break;
      case READ_VALUES:
        buff[2]=ATA_SMART_READ_VALUES;
        buff[3]=1;
        copydata=512;
        break;
      case READ_THRESHOLDS:
        buff[2]=ATA_SMART_READ_THRESHOLDS;
        buff[1]=buff[3]=1;
        copydata=512;
        break;
      case READ_LOG:
        buff[2]=ATA_SMART_READ_LOG_SECTOR;
        buff[1]=select;
        buff[3]=1;
        copydata=512;
        break;
      case WRITE_LOG:
        break;
      case IDENTIFY:
        buff[0]=ATA_IDENTIFY_DEVICE;
        buff[3]=1;
        copydata=512;
        break;
      case PIDENTIFY:
        buff[0]=ATA_IDENTIFY_PACKET_DEVICE;
        buff[3]=1;
        copydata=512;
        break;
      case ENABLE:
        buff[2]=ATA_SMART_ENABLE;
        buff[1]=1;
        break;
      case DISABLE:
        buff[2]=ATA_SMART_DISABLE;
        buff[1]=1;
        break;
      case STATUS:
        buff[2]=ATA_SMART_STATUS;
        break;
      case AUTO_OFFLINE:
        buff[2]=ATA_SMART_AUTO_OFFLINE;
        buff[3]=select;
        break;
      case AUTOSAVE:
        buff[2]=ATA_SMART_AUTOSAVE;
        buff[3]=select;
        break;
      case IMMEDIATE_OFFLINE:
        buff[2]=ATA_SMART_IMMEDIATE_OFFLINE;
        buff[1]=select;
        break;
      case STATUS_CHECK:
        buff[1]=ATA_SMART_STATUS;
        break;
      default:
        pout("Unrecognized command %d in linux_highpoint_command_interface()\n"
             "Please contact " PACKAGE_BUGREPORT "\n", command);
        errno=ENOSYS;
        return -1;
      }
    
      if (command==WRITE_LOG) {
        unsigned char task[4*sizeof(int)+sizeof(ide_task_request_t)+512];
        unsigned int *hpt = (unsigned int *)task;
        ide_task_request_t *reqtask = (ide_task_request_t *)(&task[4*sizeof(int)]);
        task_struct_t *taskfile = (task_struct_t *)reqtask->io_ports;
        int retval;
    
        memset(task, 0, sizeof(task));
    
        hpt[0] = m_hpt_data[0]; // controller id
        hpt[1] = m_hpt_data[1]; // channel number
        hpt[3] = m_hpt_data[2]; // pmport number
        hpt[2] = HDIO_DRIVE_TASKFILE; // real hd ioctl
    
        taskfile->data           = 0;
        taskfile->feature        = ATA_SMART_WRITE_LOG_SECTOR;
        taskfile->sector_count   = 1;
        taskfile->sector_number  = select;
        taskfile->low_cylinder   = 0x4f;
        taskfile->high_cylinder  = 0xc2;
        taskfile->device_head    = 0;
        taskfile->command        = ATA_SMART_CMD;
    
        reqtask->data_phase      = TASKFILE_OUT;
        reqtask->req_cmd         = IDE_DRIVE_TASK_OUT;
        reqtask->out_size        = 512;
        reqtask->in_size         = 0;
    
        memcpy(task+sizeof(ide_task_request_t)+4*sizeof(int), data, 512);
    
        if ((retval=ioctl(get_fd(), HPTIO_CTL, task))) {
          if (retval==-EINVAL)
            pout("Kernel lacks HDIO_DRIVE_TASKFILE support; compile kernel with CONFIG_IDE_TASKFILE_IO set\n");
          return -1;
        }
        return 0;
      }
    
      if (command==STATUS_CHECK){
        int retval;
        unsigned const char normal_lo=0x4f, normal_hi=0xc2;
        unsigned const char failed_lo=0xf4, failed_hi=0x2c;
        buff[4]=normal_lo;
        buff[5]=normal_hi;
    
        hpt[2] = HDIO_DRIVE_TASK;
    
        if ((retval=ioctl(get_fd(), HPTIO_CTL, hpt_buff))) {
          if (retval==-EINVAL) {
            pout("Error SMART Status command via HDIO_DRIVE_TASK failed");
            pout("Rebuild older linux 2.2 kernels with HDIO_DRIVE_TASK support added\n");
          }
          else
            syserror("Error SMART Status command failed");
          return -1;
        }
    
        if (buff[4]==normal_lo && buff[5]==normal_hi)
          return 0;
    
        if (buff[4]==failed_lo && buff[5]==failed_hi)
          return 1;
    
        syserror("Error SMART Status command failed");
        pout("Please get assistance from " PACKAGE_HOMEPAGE "\n");
        pout("Register values returned from SMART Status command are:\n");
        pout("CMD=0x%02x\n",(int)buff[0]);
        pout("FR =0x%02x\n",(int)buff[1]);
        pout("NS =0x%02x\n",(int)buff[2]);
        pout("SC =0x%02x\n",(int)buff[3]);
        pout("CL =0x%02x\n",(int)buff[4]);
        pout("CH =0x%02x\n",(int)buff[5]);
        pout("SEL=0x%02x\n",(int)buff[6]);
        return -1;
      }
    
    #if 1
      if (command==IDENTIFY || command==PIDENTIFY) {
        unsigned char deviceid[4*sizeof(int)+512*sizeof(char)];
        unsigned int *hpt = (unsigned int *)deviceid;
    
        hpt[0] = m_hpt_data[0]; // controller id
        hpt[1] = m_hpt_data[1]; // channel number
        hpt[3] = m_hpt_data[2]; // pmport number
    
        hpt[2] = HDIO_GET_IDENTITY;
        if (!ioctl(get_fd(), HPTIO_CTL, deviceid) && (deviceid[4*sizeof(int)] & 0x8000))
          buff[0]=(command==IDENTIFY)?ATA_IDENTIFY_PACKET_DEVICE:ATA_IDENTIFY_DEVICE;
      }
    #endif
    
      hpt[2] = HDIO_DRIVE_CMD;
      if ((ioctl(get_fd(), HPTIO_CTL, hpt_buff)))
        return -1;
    
      if (command==CHECK_POWER_MODE)
        buff[HDIO_DRIVE_CMD_OFFSET]=buff[2];
    
      if (copydata)
        memcpy(data, buff+HDIO_DRIVE_CMD_OFFSET, copydata);
    
      return 0;
    }
    
    
    #if 0 // TODO: Migrate from 'smart_command_set' to 'ata_in_regs' OR remove the function
    // Utility function for printing warnings
    void printwarning(smart_command_set command){
      static int printed[4]={0,0,0,0};
      const char* message=
        "can not be passed through the 3ware 3w-xxxx driver.  This can be fixed by\n"
        "applying a simple 3w-xxxx driver patch that can be found here:\n"
        PACKAGE_HOMEPAGE "\n"
        "Alternatively, upgrade your 3w-xxxx driver to version 1.02.00.037 or greater.\n\n";
    
      if (command==AUTO_OFFLINE && !printed[0]) {
        printed[0]=1;
        pout("The SMART AUTO-OFFLINE ENABLE command (smartmontools -o on option/Directive)\n%s", message);
      }
      else if (command==AUTOSAVE && !printed[1]) {
        printed[1]=1;
        pout("The SMART AUTOSAVE ENABLE command (smartmontools -S on option/Directive)\n%s", message);
      }
      else if (command==STATUS_CHECK && !printed[2]) {
        printed[2]=1;
        pout("The SMART RETURN STATUS return value (smartmontools -H option/Directive)\n%s", message);
      }
      else if (command==WRITE_LOG && !printed[3])  {
        printed[3]=1;
        pout("The SMART WRITE LOG command (smartmontools -t selective) only supported via char /dev/tw[ae] interface\n");
      }
    
      return;
    }
    #endif
    
    
    /////////////////////////////////////////////////////////////////////////////
    /// SCSI open with autodetection support
    
    smart_device * linux_scsi_device::autodetect_open()
    {
      // Open device
      if (!open())
        return this;
    
      // No Autodetection if device type was specified by user
      bool sat_only = false;
      if (*get_req_type()) {
        // Detect SAT if device object was created by scan_smart_devices().
        if (!(m_scanning && !strcmp(get_req_type(), "sat")))
          return this;
        sat_only = true;
      }
    
      // The code below is based on smartd.cpp:SCSIFilterKnown()
    
      // Get INQUIRY
      unsigned char req_buff[64] = {0, };
      int req_len = 36;
      if (scsiStdInquiry(this, req_buff, req_len)) {
        // Marvell controllers fail on a 36 bytes StdInquiry, but 64 suffices
        // watch this spot ... other devices could lock up here
        req_len = 64;
        if (scsiStdInquiry(this, req_buff, req_len)) {
          // device doesn't like INQUIRY commands
          close();
          set_err(EIO, "INQUIRY failed");
          return this;
        }
      }
    
      int avail_len = req_buff[4] + 5;
      int len = (avail_len < req_len ? avail_len : req_len);
      if (len < 36) {
        if (sat_only) {
          close();
          set_err(EIO, "INQUIRY too short for SAT");
        }
        return this;
      }
    
      // Use INQUIRY to detect type
      if (!sat_only) {
    
        // 3ware ?
        if (!memcmp(req_buff + 8, "3ware", 5) || !memcmp(req_buff + 8, "AMCC", 4)) {
          close();
          set_err(EINVAL, "AMCC/3ware controller, please try adding '-d 3ware,N',\n"
                          "you may need to replace %s with /dev/twaN or /dev/tweN", get_dev_name());
          return this;
        }
    
        // DELL?
        if (!memcmp(req_buff + 8, "DELL    PERC", 12) || !memcmp(req_buff + 8, "MegaRAID", 8)) {
          close();
          set_err(EINVAL, "DELL or MegaRaid controller, please try adding '-d megaraid,N'");
          return this;
        }
    
        // Marvell ?
        if (len >= 42 && !memcmp(req_buff + 36, "MVSATA", 6)) {
          //pout("Device %s: using '-d marvell' for ATA disk with Marvell driver\n", get_dev_name());
          close();
          smart_device_auto_ptr newdev(
            new linux_marvell_device(smi(), get_dev_name(), get_req_type())
          );
          newdev->open(); // TODO: Can possibly pass open fd
          delete this;
          return newdev.release();
        }
      }
    
      // SAT or USB ?
      {
        smart_device * newdev = smi()->autodetect_sat_device(this, req_buff, len);
        if (newdev)
          // NOTE: 'this' is now owned by '*newdev'
          return newdev;
      }
    
      // Nothing special found
    
      if (sat_only) {
        close();
        set_err(EIO, "Not a SAT device");
      }
      return this;
    }
    
    
    //////////////////////////////////////////////////////////////////////
    // USB bridge ID detection
    
    // Read USB ID from /sys file
    static bool read_id(const std::string & path, unsigned short & id)
    {
      FILE * f = fopen(path.c_str(), "r");
      if (!f)
        return false;
      int n = -1;
      bool ok = (fscanf(f, "%hx%n", &id, &n) == 1 && n == 4);
      fclose(f);
      return ok;
    }
    
    // Get USB bridge ID for "sdX"
    static bool get_usb_id(const char * name, unsigned short & vendor_id,
                           unsigned short & product_id, unsigned short & version)
    {
      // Only "sdX" supported
      if (!(!strncmp(name, "sd", 2) && !strchr(name, '/')))
        return false;
    
      // Start search at dir referenced by symlink "/sys/block/sdX/device"
      // -> "/sys/devices/.../usb*/.../host*/target*/..."
      std::string dir = strprintf("/sys/block/%s/device", name);
    
      // Stop search at "/sys/devices"
      struct stat st;
      if (stat("/sys/devices", &st))
        return false;
      ino_t stop_ino = st.st_ino;
    
      // Search in parent directories until "idVendor" is found,
      // fail if "/sys/devices" reached or too many iterations
      int cnt = 0;
      do {
        dir += "/..";
        if (!(++cnt < 10 && !stat(dir.c_str(), &st) && st.st_ino != stop_ino))
          return false;
      } while (access((dir + "/idVendor").c_str(), 0));
    
      // Read IDs
      if (!(   read_id(dir + "/idVendor", vendor_id)
            && read_id(dir + "/idProduct", product_id)
            && read_id(dir + "/bcdDevice", version)   ))
        return false;
    
      if (con->reportscsiioctl > 1)
        pout("USB ID = 0x%04x:0x%04x (0x%03x)\n", vendor_id, product_id, version);
      return true;
    }
    
    
    //////////////////////////////////////////////////////////////////////
    /// Linux interface
    
    class linux_smart_interface
    : public /*implements*/ smart_interface
    {
    public:
      virtual std::string get_app_examples(const char * appname);
    
      virtual bool scan_smart_devices(smart_device_list & devlist, const char * type,
        const char * pattern = 0);
    
    protected:
      virtual ata_device * get_ata_device(const char * name, const char * type);
    
      virtual scsi_device * get_scsi_device(const char * name, const char * type);
    
      virtual smart_device * autodetect_smart_device(const char * name);
    
      virtual smart_device * get_custom_smart_device(const char * name, const char * type);
    
      virtual std::string get_valid_custom_dev_types_str();
    
    private:
      bool get_dev_list(smart_device_list & devlist, const char * pattern,
        bool scan_ata, bool scan_scsi, const char * req_type, bool autodetect);
    
      smart_device * missing_option(const char * opt);
    };
    
    std::string linux_smart_interface::get_app_examples(const char * appname)
    {
      if (!strcmp(appname, "smartctl"))
        return smartctl_examples;
      return "";
    }
    
    
    // we are going to take advantage of the fact that Linux's devfs will only
    // have device entries for devices that exist.  So if we get the equivalent of
    // ls /dev/hd[a-t], we have all the ATA devices on the system
    bool linux_smart_interface::get_dev_list(smart_device_list & devlist,
      const char * pattern, bool scan_ata, bool scan_scsi,
      const char * req_type, bool autodetect)
    {
      // Use glob to look for any directory entries matching the pattern
      glob_t globbuf;
      memset(&globbuf, 0, sizeof(globbuf));
      int retglob = glob(pattern, GLOB_ERR, NULL, &globbuf);
      if (retglob) {
        //  glob failed: free memory and return
        globfree(&globbuf);
    
        if (retglob==GLOB_NOMATCH){
          pout("glob(3) found no matches for pattern %s\n", pattern);
          return true;
        }
    
        if (retglob==GLOB_NOSPACE)
          set_err(ENOMEM, "glob(3) ran out of memory matching pattern %s", pattern);
    #ifdef GLOB_ABORTED // missing in old versions of glob.h
        else if (retglob==GLOB_ABORTED)
          set_err(EINVAL, "glob(3) aborted matching pattern %s", pattern);
    #endif
        else
          set_err(EINVAL, "Unexplained error in glob(3) of pattern %s", pattern);
    
        return false;
      }
    
      // did we find too many paths?
      const int max_pathc = 32;
      int n = (int)globbuf.gl_pathc;
      if (n > max_pathc) {
        pout("glob(3) found %d > MAX=%d devices matching pattern %s: ignoring %d paths\n",
             n, max_pathc, pattern, n - max_pathc);
        n = max_pathc;
      }
    
      // now step through the list returned by glob.  If not a link, copy
      // to list.  If it is a link, evaluate it and see if the path ends
      // in "disc".
      for (int i = 0; i < n; i++){
        // see if path is a link
        char linkbuf[1024];
        int retlink = readlink(globbuf.gl_pathv[i], linkbuf, sizeof(linkbuf)-1);
    
        char tmpname[1024]={0};
        const char * name = 0;
        bool is_scsi = scan_scsi;
        // if not a link (or a strange link), keep it
        if (retlink<=0 || retlink>1023)
          name = globbuf.gl_pathv[i];
        else {
          // or if it's a link that points to a disc, follow it
          linkbuf[retlink] = 0;
          const char *p;
          if ((p=strrchr(linkbuf, '/')) && !strcmp(p+1, "disc"))
            // This is the branch of the code that gets followed if we are
            // using devfs WITH traditional compatibility links. In this
            // case, we add the traditional device name to the list that
            // is returned.
            name = globbuf.gl_pathv[i];
          else {
            // This is the branch of the code that gets followed if we are
            // using devfs WITHOUT traditional compatibility links.  In
            // this case, we check that the link to the directory is of
            // the correct type, and then append "disc" to it.
            bool match_ata  = strstr(linkbuf, "ide");
            bool match_scsi = strstr(linkbuf, "scsi");
            if (((match_ata && scan_ata) || (match_scsi && scan_scsi)) && !(match_ata && match_scsi)) {
              is_scsi = match_scsi;
              snprintf(tmpname, sizeof(tmpname), "%s/disc", globbuf.gl_pathv[i]);
              name = tmpname;
            }
          }
        }
    
        if (name) {
          // Found a name, add device to list.
          smart_device * dev;
          if (autodetect)
            dev = autodetect_smart_device(name);
          else if (is_scsi)
            dev = new linux_scsi_device(this, name, req_type, true /*scanning*/);
          else
            dev = new linux_ata_device(this, name, req_type);
          if (dev) // autodetect_smart_device() may return nullptr.
            devlist.push_back(dev);
        }
      }
    
      // free memory
      globfree(&globbuf);
    
      return true;
    }
    
    bool linux_smart_interface::scan_smart_devices(smart_device_list & devlist,
      const char * type, const char * pattern /*= 0*/)
    {
      if (pattern) {
        set_err(EINVAL, "DEVICESCAN with pattern not implemented yet");
        return false;
      }
    
      if (!type)
        type = "";
    
      bool scan_ata  = (!*type || !strcmp(type, "ata" ));
      // "sat" detection will be later handled in linux_scsi_device::autodetect_open()
      bool scan_scsi = (!*type || !strcmp(type, "scsi") || !strcmp(type, "sat"));
      if (!(scan_ata || scan_scsi))
        return true;
    
      if (scan_ata)
        get_dev_list(devlist, "/dev/hd[a-t]", true, false, type, false);
      if (scan_scsi) // Try USB autodetection if no type specifed
        get_dev_list(devlist, "/dev/sd[a-z]", false, true, type, !*type);
    
      // if we found traditional links, we are done
      if (devlist.size() > 0)
        return true;
    
      // else look for devfs entries without traditional links
      // TODO: Add udev support
      return get_dev_list(devlist, "/dev/discs/disc*", scan_ata, scan_scsi, type, false);
    }
    
    ata_device * linux_smart_interface::get_ata_device(const char * name, const char * type)
    {
      return new linux_ata_device(this, name, type);
    }
    
    scsi_device * linux_smart_interface::get_scsi_device(const char * name, const char * type)
    {
      return new linux_scsi_device(this, name, type);
    }
    
    smart_device * linux_smart_interface::missing_option(const char * opt)
    {
      set_err(EINVAL, "requires option '%s'", opt);
      return 0;
    }
    
    // Return true if STR starts with PREFIX.
    static bool str_starts_with(const char * str, const char * prefix)
    {
      return !strncmp(str, prefix, strlen(prefix));
    }
    
    // Guess device type (ata or scsi) based on device name (Linux
    // specific) SCSI device name in linux can be sd, sr, scd, st, nst,
    // osst, nosst and sg.
    static const char * lin_dev_prefix = "/dev/";
    static const char * lin_dev_ata_disk_plus = "h";
    static const char * lin_dev_ata_devfs_disk_plus = "ide/";
    static const char * lin_dev_scsi_devfs_disk_plus = "scsi/";
    static const char * lin_dev_scsi_disk_plus = "s";
    static const char * lin_dev_scsi_tape1 = "ns";
    static const char * lin_dev_scsi_tape2 = "os";
    static const char * lin_dev_scsi_tape3 = "nos";
    static const char * lin_dev_3ware_9000_char = "twa";
    static const char * lin_dev_3ware_678k_char = "twe";
    static const char * lin_dev_cciss_dir = "cciss/";
    static const char * lin_dev_areca = "sg";
    
    smart_device * linux_smart_interface::autodetect_smart_device(const char * name)
    {
      const char * dev_name = name; // TODO: Remove this hack
      int dev_prefix_len = strlen(lin_dev_prefix);
    
      // if dev_name null, or string length zero
      int len;
      if (!dev_name || !(len = strlen(dev_name)))
        return 0;
    
      // Dereference if /dev/disk/by-*/* symlink
      char linkbuf[100];
      if (   str_starts_with(dev_name, "/dev/disk/by-")
          && readlink(dev_name, linkbuf, sizeof(linkbuf)) > 0
          && str_starts_with(linkbuf, "../../")) {
        dev_name = linkbuf + sizeof("../../")-1;
      }
      // Remove the leading /dev/... if it's there
      else if (!strncmp(lin_dev_prefix, dev_name, dev_prefix_len)) {
        if (len <= dev_prefix_len)
          // if nothing else in the string, unrecognized
          return 0;
        // else advance pointer to following characters
        dev_name += dev_prefix_len;
      }
    
      // form /dev/h* or h*
      if (!strncmp(lin_dev_ata_disk_plus, dev_name,
                   strlen(lin_dev_ata_disk_plus)))
        return new linux_ata_device(this, name, "");
    
      // form /dev/ide/* or ide/*
      if (!strncmp(lin_dev_ata_devfs_disk_plus, dev_name,
                   strlen(lin_dev_ata_devfs_disk_plus)))
        return new linux_ata_device(this, name, "");
    
      // form /dev/s* or s*
      if (!strncmp(lin_dev_scsi_disk_plus, dev_name,
                   strlen(lin_dev_scsi_disk_plus))) {
    
        // Try to detect possible USB->(S)ATA bridge
        unsigned short vendor_id = 0, product_id = 0, version = 0;
        if (get_usb_id(dev_name, vendor_id, product_id, version)) {
          const char * usbtype = get_usb_dev_type_by_id(vendor_id, product_id, version);
          if (!usbtype)
            return 0;
          // Linux USB layer does not support 16 byte SAT pass through command
          if (!strcmp(usbtype, "sat"))
            usbtype = "sat,12";
          // Return SAT/USB device for this type
          // (Note: linux_scsi_device::autodetect_open() will not be called in this case)
          return get_sat_device(usbtype, new linux_scsi_device(this, name, ""));
        }
    
        // No USB bridge found, assume regular SCSI device
        return new linux_scsi_device(this, name, "");
      }
    
      // form /dev/scsi/* or scsi/*
      if (!strncmp(lin_dev_scsi_devfs_disk_plus, dev_name,
                   strlen(lin_dev_scsi_devfs_disk_plus)))
        return new linux_scsi_device(this, name, "");
    
      // form /dev/ns* or ns*
      if (!strncmp(lin_dev_scsi_tape1, dev_name,
                   strlen(lin_dev_scsi_tape1)))
        return new linux_scsi_device(this, name, "");
    
      // form /dev/os* or os*
      if (!strncmp(lin_dev_scsi_tape2, dev_name,
                   strlen(lin_dev_scsi_tape2)))
        return new linux_scsi_device(this, name, "");
    
      // form /dev/nos* or nos*
      if (!strncmp(lin_dev_scsi_tape3, dev_name,
                   strlen(lin_dev_scsi_tape3)))
        return new linux_scsi_device(this, name, "");
    
      // form /dev/twa*
      if (!strncmp(lin_dev_3ware_9000_char, dev_name,
                   strlen(lin_dev_3ware_9000_char)))
        return missing_option("-d 3ware,N");
    
      // form /dev/twe*
      if (!strncmp(lin_dev_3ware_678k_char, dev_name,
                   strlen(lin_dev_3ware_678k_char)))
        return missing_option("-d 3ware,N");
    
      // form /dev/cciss*
      if (!strncmp(lin_dev_cciss_dir, dev_name,
                   strlen(lin_dev_cciss_dir)))
        return missing_option("-d cciss,N");
    
      // form /dev/sg*
      if ( !strncmp(lin_dev_areca, dev_name,
                    strlen(lin_dev_areca)) )
        return missing_option("-d areca,N");
    
      // we failed to recognize any of the forms
      return 0;
    }
    
    smart_device * linux_smart_interface::get_custom_smart_device(const char * name, const char * type)
    {
      // Marvell ?
      if (!strcmp(type, "marvell"))
        return new linux_marvell_device(this, name, type);
    
      // 3Ware ?
      int disknum = -1, n1 = -1, n2 = -1;
      if (sscanf(type, "3ware,%n%d%n", &n1, &disknum, &n2) == 1 || n1 == 6) {
        if (n2 != (int)strlen(type)) {
          set_err(EINVAL, "Option -d 3ware,N requires N to be a non-negative integer");
          return 0;
        }
        if (!(0 <= disknum && disknum <= 127)) {
          set_err(EINVAL, "Option -d 3ware,N (N=%d) must have 0 <= N <= 127", disknum);
          return 0;
        }
    
        if (!strncmp(name, "/dev/twa", 8))
          return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_9000_CHAR, disknum);
        else if (!strncmp(name, "/dev/twe", 8))
          return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_678K_CHAR, disknum);
        else
          return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_678K, disknum);
      }
    
      // Areca?
      disknum = n1 = n2 = -1;
      if (sscanf(type, "areca,%n%d%n", &n1, &disknum, &n2) == 1 || n1 == 6) {
        if (n2 != (int)strlen(type)) {
          set_err(EINVAL, "Option -d areca,N requires N to be a non-negative integer");
          return 0;
        }
        if (!(1 <= disknum && disknum <= 24)) {
          set_err(EINVAL, "Option -d areca,N (N=%d) must have 1 <= N <= 24", disknum);
          return 0;
        }
        return new linux_areca_device(this, name, disknum);
      }
    
      // Highpoint ?
      int controller = -1, channel = -1; disknum = 1;
      n1 = n2 = -1; int n3 = -1;
      if (sscanf(type, "hpt,%n%d/%d%n/%d%n", &n1, &controller, &channel, &n2, &disknum, &n3) >= 2 || n1 == 4) {
        int len = strlen(type);
        if (!(n2 == len || n3 == len)) {
          set_err(EINVAL, "Option '-d hpt,L/M/N' supports 2-3 items");
          return 0;
        }
        if (!(1 <= controller && controller <= 8)) {
          set_err(EINVAL, "Option '-d hpt,L/M/N' invalid controller id L supplied");
          return 0;
        }
        if (!(1 <= channel && channel <= 8)) {
          set_err(EINVAL, "Option '-d hpt,L/M/N' invalid channel number M supplied");
          return 0;
        }
        if (!(1 <= disknum && disknum <= 15)) {
          set_err(EINVAL, "Option '-d hpt,L/M/N' invalid pmport number N supplied");
          return 0;
        }
        return new linux_highpoint_device(this, name, controller, channel, disknum);
      }
    
    #ifdef HAVE_LINUX_CCISS_IOCTL_H
      // CCISS ?
      disknum = n1 = n2 = -1;
      if (sscanf(type, "cciss,%n%d%n", &n1, &disknum, &n2) == 1 || n1 == 6) {
        if (n2 != (int)strlen(type)) {
          set_err(EINVAL, "Option -d cciss,N requires N to be a non-negative integer");
          return 0;
        }
        if (!(0 <= disknum && disknum <= 15)) {
          set_err(EINVAL, "Option -d cciss,N (N=%d) must have 0 <= N <= 15", disknum);
          return 0;
        }
        return new linux_cciss_device(this, name, disknum);
      }
    #endif // HAVE_LINUX_CCISS_IOCTL_H
    
      // MegaRAID ?
      if (sscanf(type, "megaraid,%d", &disknum) == 1) {
        return new linux_megaraid_device(this, name, 0, disknum);
      }
      return 0;
    }
    
    std::string linux_smart_interface::get_valid_custom_dev_types_str()
    {
      return "marvell, areca,N, 3ware,N, hpt,L/M/N, megaraid,N"
    #ifdef HAVE_LINUX_CCISS_IOCTL_H
                                                  ", cciss,N"
    #endif
        ;
    }
    
    } // namespace
    
    
    /////////////////////////////////////////////////////////////////////////////
    /// Initialize platform interface and register with smi()
    
    void smart_interface::init()
    {
      static os_linux::linux_smart_interface the_interface;
      smart_interface::set(&the_interface);
    }