Commit 0ca51fa7 authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Adds method to calculate frequency range of signal

parent 286b576c
......@@ -3,4 +3,5 @@ from __future__ import division as _division
from .core import BaseSearchClass, ComputeFstat, Writer, SemiCoherentSearch, SemiCoherentGlitchSearch
from .mcmc_based_searches import MCMCSearch, MCMCGlitchSearch, MCMCSemiCoherentSearch, MCMCFollowUpSearch, MCMCTransientSearch
from .grid_based_searches import GridSearch, GridUniformPriorSearch, GridGlitchSearch, FrequencySlidingWindow
from .injection_helper_functions import get_frequency_range_of_signal
""" Code used with permissision from Sylvia Zhu to calculate the range in
frequency space that a signal occupies due to spindown and Doppler
import numpy as np
from astropy import units as u
from astropy.coordinates import SkyCoord
from astropy.time import Time
# Assume Earth goes around Sun in a non-wobbling circle at constant speed;
# Still take the zero longitude to be the Earth's position during the March
# equinox, or March 20.
# Each day the Earth moves 2*pi/365 radians around its orbit.
def _eqToEcl(alpha, delta):
source = SkyCoord(alpha*u.radian, delta*u.radian, frame='gcrs')
out = source.transform_to('geocentrictrueecliptic')
return np.array([out.lon.radian,])
def _eclToEq(lon, lat):
source = SkyCoord(lon*u.radian, lat*u.radian,
out = source.transform_to('gcrs')
return np.array([out.ra.radian, out.dec.radian])
def _calcDopplerWings(
s_freq, s_alpha, s_delta, lonStart, lonStop, numTimes=100):
e_longitudes = np.linspace(lonStart, lonStop, numTimes)
v_over_c = 1e-4
s_lon, s_lat = _eqToEcl(s_alpha, s_delta)
vertical = s_lat
horizontals = s_lon - e_longitudes
dopplerShifts = s_freq * np.sin(horizontals) * np.cos(vertical) * v_over_c
return np.amin(dopplerShifts), np.amax(dopplerShifts)
def _calcSpindownWings(freq, fdot, minStartTime, maxStartTime):
timespan = maxStartTime - minStartTime
return 0.5 * timespan * np.abs(fdot) * np.array([-1, 1])
def get_frequency_range_of_signal(F0, F1, Alpha, Delta, minStartTime,
""" Calculate the frequency range that a signal will occupy
F0, F1, Alpha, Delta: float
Frequency, derivative, and sky position for the signal (all angles in
minStartTime, maxStartTime: float
GPS time of the start and end of the data span
[Fmin, Fmax]: array
The minimum and maximum frequency span
YEAR_IN_DAYS = 365.25
tEquinox = 79
minStartTime_t = Time(minStartTime, format='gps').to_datetime().timetuple()
maxStartTime_t = Time(minStartTime, format='gps').to_datetime().timetuple()
tStart_days = minStartTime_t.tm_yday - tEquinox
tStop_days = maxStartTime_t.tm_yday - tEquinox
tStop_days += (maxStartTime_t.tm_year-minStartTime_t.tm_year)*YEAR_IN_DAYS
tStart_days = 280 - tEquinox # 7 October is day 280 in a non leap year
tStop_days = 19 + YEAR_IN_DAYS - tEquinox # the next year
lonStart = 2*np.pi*tStart_days/YEAR_IN_DAYS - np.pi
lonStop = 2*np.pi*tStop_days/YEAR_IN_DAYS - np.pi
dopplerWings = _calcDopplerWings(F0, Alpha, Delta, lonStart, lonStop)
spindownWings = _calcSpindownWings(F0, F1, minStartTime, maxStartTime)
return np.array([F0, F0]) + dopplerWings + spindownWings
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment