Skip to content
GitLab
Menu
Projects
Groups
Snippets
/
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Gregory Ashton
PyFstat
Commits
274059a7
Commit
274059a7
authored
Aug 09, 2017
by
Gregory Ashton
Browse files
Remove old paper directory
parent
afbb9815
Changes
63
Show whitespace changes
Inline
Side-by-side
Paper/AllSkyMC/AllSkyMC_repeat.sh
deleted
100755 → 0
View file @
afbb9815
#!/bin/bash
.
/home/gregory.ashton/lalsuite-install/etc/lalapps-user-env.sh
export
PATH
=
"/home/gregory.ashton/anaconda2/bin:
$PATH
"
export
MPLCONFIGDIR
=
/home/gregory.ashton/.config/matplotlib
for
((
n
=
0
;
n<10
;
n++
))
do
/home/gregory.ashton/anaconda2/bin/python generate_data.py
"
$1
"
/local/user/gregory.ashton
--no-template-counting
--no-interactive
done
cp
/local/user/gregory.ashton/MCResults_
"
$1
"
.txt
$(
pwd
)
/CollectedOutput
Paper/AllSkyMC/generate_data.py
deleted
100644 → 0
View file @
afbb9815
import
pyfstat
import
numpy
as
np
import
os
import
sys
import
time
ID
=
sys
.
argv
[
1
]
outdir
=
sys
.
argv
[
2
]
label
=
'run_{}'
.
format
(
ID
)
data_label
=
'{}_data'
.
format
(
label
)
results_file_name
=
'{}/MCResults_{}.txt'
.
format
(
outdir
,
ID
)
# Properties of the GW data
sqrtSX
=
1e-23
tstart
=
1000000000
Tspan
=
100
*
86400
tend
=
tstart
+
Tspan
# Fixed properties of the signal
F0_center
=
30
F1_center
=
-
1e-10
F2
=
0
tref
=
.
5
*
(
tstart
+
tend
)
VF0
=
VF1
=
100
DeltaF0
=
VF0
*
np
.
sqrt
(
3
)
/
(
np
.
pi
*
Tspan
)
DeltaF1
=
VF1
*
np
.
sqrt
(
45
/
4.
)
/
(
np
.
pi
*
Tspan
**
2
)
DeltaAlpha
=
0.02
DeltaDelta
=
0.02
depths
=
np
.
linspace
(
100
,
400
,
9
)
depths
=
[
118.75
,
156.25
]
nsteps
=
50
run_setup
=
[((
nsteps
,
0
),
20
,
False
),
((
nsteps
,
0
),
11
,
False
),
((
nsteps
,
0
),
6
,
False
),
((
nsteps
,
0
),
3
,
False
),
((
nsteps
,
nsteps
),
1
,
False
)]
for
depth
in
depths
:
h0
=
sqrtSX
/
float
(
depth
)
F0
=
F0_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaF0
F1
=
F1_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaF1
Alpha_center
=
np
.
random
.
uniform
(
DeltaAlpha
,
2
*
np
.
pi
-
DeltaAlpha
)
Delta_center
=
np
.
arccos
(
2
*
np
.
random
.
uniform
(
0
,
1
)
-
1
)
-
np
.
pi
/
2
Alpha
=
Alpha_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaAlpha
Delta
=
Delta_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaDelta
psi
=
np
.
random
.
uniform
(
-
np
.
pi
/
4
,
np
.
pi
/
4
)
phi
=
np
.
random
.
uniform
(
0
,
2
*
np
.
pi
)
cosi
=
np
.
random
.
uniform
(
-
1
,
1
)
data
=
pyfstat
.
Writer
(
label
=
data_label
,
outdir
=
outdir
,
tref
=
tref
,
tstart
=
tstart
,
F0
=
F0
,
F1
=
F1
,
F2
=
F2
,
duration
=
Tspan
,
Alpha
=
Alpha
,
Delta
=
Delta
,
h0
=
h0
,
sqrtSX
=
sqrtSX
,
psi
=
psi
,
phi
=
phi
,
cosi
=
cosi
,
detector
=
'H1,L1'
)
data
.
make_data
()
startTime
=
time
.
time
()
theta_prior
=
{
'F0'
:
{
'type'
:
'unif'
,
'lower'
:
F0_center
-
DeltaF0
,
'upper'
:
F0_center
+
DeltaF0
},
'F1'
:
{
'type'
:
'unif'
,
'lower'
:
F1_center
-
DeltaF1
,
'upper'
:
F1_center
+
DeltaF1
},
'F2'
:
F2
,
'Alpha'
:
{
'type'
:
'unif'
,
'lower'
:
Alpha_center
-
DeltaAlpha
,
'upper'
:
Alpha_center
+
DeltaAlpha
},
'Delta'
:
{
'type'
:
'unif'
,
'lower'
:
Delta_center
-
DeltaDelta
,
'upper'
:
Delta_center
+
DeltaDelta
},
}
ntemps
=
2
log10temperature_min
=
-
1
nwalkers
=
100
mcmc
=
pyfstat
.
MCMCFollowUpSearch
(
label
=
label
,
outdir
=
outdir
,
sftfilepath
=
'{}/*{}*sft'
.
format
(
outdir
,
data_label
),
theta_prior
=
theta_prior
,
tref
=
tref
,
minStartTime
=
tstart
,
maxStartTime
=
tend
,
nwalkers
=
nwalkers
,
ntemps
=
ntemps
,
log10temperature_min
=
log10temperature_min
)
mcmc
.
run
(
run_setup
=
run_setup
,
create_plots
=
False
,
log_table
=
False
,
gen_tex_table
=
False
)
d
,
maxtwoF
=
mcmc
.
get_max_twoF
()
dF0
=
F0
-
d
[
'F0'
]
dF1
=
F1
-
d
[
'F1'
]
runTime
=
time
.
time
()
-
startTime
with
open
(
results_file_name
,
'a'
)
as
f
:
f
.
write
(
'{} {:1.8e} {:1.8e} {:1.8e} {:1.8e} {}
\n
'
.
format
(
depth
,
h0
,
dF0
,
dF1
,
maxtwoF
,
runTime
))
os
.
system
(
'rm {}/*{}*'
.
format
(
outdir
,
label
))
Paper/AllSkyMC/generate_failures.py
deleted
100644 → 0
View file @
afbb9815
import
pyfstat
import
numpy
as
np
import
os
import
time
outdir
=
'data'
label
=
'run_failures'
data_label
=
'{}_data'
.
format
(
label
)
results_file_name
=
'{}/MCResults_failures.txt'
.
format
(
outdir
)
# Properties of the GW data
sqrtSX
=
2e-23
tstart
=
1000000000
Tspan
=
100
*
86400
tend
=
tstart
+
Tspan
# Fixed properties of the signal
F0_center
=
30
F1_center
=
1e-10
F2
=
0
tref
=
.
5
*
(
tstart
+
tend
)
VF0
=
VF1
=
100
DeltaF0
=
VF0
*
np
.
sqrt
(
3
)
/
(
np
.
pi
*
Tspan
)
DeltaF1
=
VF1
*
np
.
sqrt
(
45
/
4.
)
/
(
np
.
pi
*
Tspan
**
2
)
DeltaAlpha
=
0.02
DeltaDelta
=
0.02
depths
=
[
140
]
nsteps
=
50
run_setup
=
[((
nsteps
,
0
),
20
,
False
),
((
nsteps
,
0
),
11
,
False
),
((
nsteps
,
0
),
6
,
False
),
((
nsteps
,
0
),
3
,
False
),
((
nsteps
,
nsteps
),
1
,
False
)]
for
depth
in
depths
:
h0
=
sqrtSX
/
float
(
depth
)
F0
=
F0_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaF0
F1
=
F1_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaF1
Alpha_center
=
np
.
random
.
uniform
(
0
,
2
*
np
.
pi
)
Delta_center
=
np
.
arccos
(
2
*
np
.
random
.
uniform
(
0
,
1
)
-
1
)
-
np
.
pi
/
2
Alpha
=
Alpha_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaAlpha
Delta
=
Delta_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaDelta
psi
=
np
.
random
.
uniform
(
-
np
.
pi
/
4
,
np
.
pi
/
4
)
phi
=
np
.
random
.
uniform
(
0
,
2
*
np
.
pi
)
cosi
=
np
.
random
.
uniform
(
-
1
,
1
)
data
=
pyfstat
.
Writer
(
label
=
data_label
,
outdir
=
outdir
,
tref
=
tref
,
tstart
=
tstart
,
F0
=
F0
,
F1
=
F1
,
F2
=
F2
,
duration
=
Tspan
,
Alpha
=
Alpha
,
Delta
=
Delta
,
h0
=
h0
,
sqrtSX
=
sqrtSX
,
psi
=
psi
,
phi
=
phi
,
cosi
=
cosi
,
detector
=
'H1,L1'
)
data
.
make_data
()
predicted_twoF
=
data
.
predict_fstat
()
startTime
=
time
.
time
()
theta_prior
=
{
'F0'
:
{
'type'
:
'unif'
,
'lower'
:
F0_center
-
DeltaF0
,
'upper'
:
F0_center
+
DeltaF0
},
'F1'
:
{
'type'
:
'unif'
,
'lower'
:
F1_center
-
DeltaF1
,
'upper'
:
F1_center
+
DeltaF1
},
'F2'
:
F2
,
'Alpha'
:
{
'type'
:
'unif'
,
'lower'
:
Alpha_center
-
DeltaAlpha
,
'upper'
:
Alpha_center
+
DeltaAlpha
},
'Delta'
:
{
'type'
:
'unif'
,
'lower'
:
Delta_center
-
DeltaDelta
,
'upper'
:
Delta_center
+
DeltaDelta
},
}
ntemps
=
2
log10temperature_min
=
-
1
nwalkers
=
100
mcmc
=
pyfstat
.
MCMCFollowUpSearch
(
label
=
label
,
outdir
=
outdir
,
sftfilepath
=
'{}/*{}*sft'
.
format
(
outdir
,
data_label
),
theta_prior
=
theta_prior
,
tref
=
tref
,
minStartTime
=
tstart
,
maxStartTime
=
tend
,
nwalkers
=
nwalkers
,
ntemps
=
ntemps
,
log10temperature_min
=
log10temperature_min
)
mcmc
.
run
(
run_setup
=
run_setup
,
create_plots
=
True
,
log_table
=
False
,
gen_tex_table
=
False
)
d
,
maxtwoF
=
mcmc
.
get_max_twoF
()
print
'MaxtwoF = {}'
.
format
(
maxtwoF
)
Paper/AllSkyMC/generate_table.py
deleted
100644 → 0
View file @
afbb9815
import
pyfstat
import
numpy
as
np
outdir
=
'data'
label
=
'allsky_setup'
data_label
=
'{}_data'
.
format
(
label
)
# Properties of the GW data
sqrtSX
=
2e-23
tstart
=
1000000000
Tspan
=
100
*
86400
tend
=
tstart
+
Tspan
# Fixed properties of the signal
F0_center
=
30
F1_center
=
1e-10
F2
=
0
tref
=
.
5
*
(
tstart
+
tend
)
VF0
=
VF1
=
100
DeltaF0
=
VF0
*
np
.
sqrt
(
3
)
/
(
np
.
pi
*
Tspan
)
DeltaF1
=
VF1
*
np
.
sqrt
(
45
/
4.
)
/
(
np
.
pi
*
Tspan
**
2
)
DeltaAlpha
=
0.02
DeltaDelta
=
0.02
depth
=
100
nsteps
=
50
run_setup
=
[((
nsteps
,
0
),
20
,
False
),
((
nsteps
,
0
),
11
,
False
),
((
nsteps
,
0
),
6
,
False
),
((
nsteps
,
0
),
3
,
False
),
((
nsteps
,
nsteps
),
1
,
False
)]
h0
=
sqrtSX
/
float
(
depth
)
r
=
np
.
random
.
uniform
(
0
,
1
)
theta
=
np
.
random
.
uniform
(
0
,
2
*
np
.
pi
)
F0
=
F0_center
+
3
*
np
.
sqrt
(
r
)
*
np
.
cos
(
theta
)
/
(
np
.
pi
**
2
*
Tspan
**
2
)
F1
=
F1_center
+
45
*
np
.
sqrt
(
r
)
*
np
.
sin
(
theta
)
/
(
4
*
np
.
pi
**
2
*
Tspan
**
4
)
Alpha_center
=
0
Delta_center
=
0
Alpha
=
Alpha_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaAlpha
Delta
=
Delta_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaDelta
psi
=
np
.
random
.
uniform
(
-
np
.
pi
/
4
,
np
.
pi
/
4
)
phi
=
np
.
random
.
uniform
(
0
,
2
*
np
.
pi
)
cosi
=
np
.
random
.
uniform
(
-
1
,
1
)
data
=
pyfstat
.
Writer
(
label
=
data_label
,
outdir
=
outdir
,
tref
=
tref
,
tstart
=
tstart
,
F0
=
F0
,
F1
=
F1
,
F2
=
F2
,
duration
=
Tspan
,
Alpha
=
Alpha
,
Delta
=
Delta
,
h0
=
h0
,
sqrtSX
=
sqrtSX
,
psi
=
psi
,
phi
=
phi
,
cosi
=
cosi
,
detector
=
'H1,L1'
)
data
.
make_data
()
predicted_twoF
=
data
.
predict_fstat
()
theta_prior
=
{
'F0'
:
{
'type'
:
'unif'
,
'lower'
:
F0_center
-
DeltaF0
,
'upper'
:
F0_center
+
DeltaF0
},
'F1'
:
{
'type'
:
'unif'
,
'lower'
:
F1_center
-
DeltaF1
,
'upper'
:
F1_center
+
DeltaF1
},
'F2'
:
F2
,
'Alpha'
:
{
'type'
:
'unif'
,
'lower'
:
Alpha_center
-
DeltaAlpha
,
'upper'
:
Alpha_center
+
DeltaAlpha
},
'Delta'
:
{
'type'
:
'unif'
,
'lower'
:
Delta_center
-
DeltaDelta
,
'upper'
:
Delta_center
+
DeltaDelta
},
}
ntemps
=
2
log10temperature_min
=
-
1
nwalkers
=
100
mcmc
=
pyfstat
.
MCMCFollowUpSearch
(
label
=
label
,
outdir
=
outdir
,
sftfilepath
=
'{}/*{}*sft'
.
format
(
outdir
,
data_label
),
theta_prior
=
theta_prior
,
tref
=
tref
,
minStartTime
=
tstart
,
maxStartTime
=
tend
,
nwalkers
=
nwalkers
,
ntemps
=
ntemps
,
nsteps
=
[
nsteps
,
nsteps
],
log10temperature_min
=
log10temperature_min
)
mcmc
.
run
(
Nsegs0
=
20
,
R
=
10
)
#mcmc.run(run_setup)
Paper/AllSkyMC/plot_data.py
deleted
100644 → 0
View file @
afbb9815
import
matplotlib.pyplot
as
plt
import
pandas
as
pd
import
numpy
as
np
import
os
from
tqdm
import
tqdm
from
oct2py
import
octave
import
glob
filenames
=
glob
.
glob
(
"CollectedOutput/*.txt"
)
plt
.
style
.
use
(
'paper'
)
Tspan
=
100
*
86400
def
Recovery
(
Tspan
,
Depth
,
twoFstar
=
60
,
detectors
=
'H1,L1'
):
numDetectors
=
len
(
detectors
.
split
(
','
))
cmd
=
(
"DetectionProbabilityStackSlide('Nseg', 1, 'Tdata', {},"
"'misHist', createDeltaHist(0), 'avg2Fth', {}, 'detectors', '{}',"
"'Depth', {})"
).
format
(
numDetectors
*
Tspan
,
twoFstar
,
detectors
,
Depth
)
return
octave
.
eval
(
cmd
,
verbose
=
False
)
def
binomialConfidenceInterval
(
N
,
K
,
confidence
=
0.95
):
cmd
=
'[fLow, fUpper] = binomialConfidenceInterval({}, {}, {})'
.
format
(
N
,
K
,
confidence
)
[
l
,
u
]
=
octave
.
eval
(
cmd
,
verbose
=
False
,
return_both
=
True
)[
0
].
split
(
'
\n
'
)
return
float
(
l
.
split
(
'='
)[
1
]),
float
(
u
.
split
(
'='
)[
1
])
df_list
=
[]
for
fn
in
filenames
:
df
=
pd
.
read_csv
(
fn
,
sep
=
' '
,
names
=
[
'depth'
,
'h0'
,
'dF0'
,
'dF1'
,
'twoF'
,
'runTime'
])
df
[
'CLUSTER_ID'
]
=
fn
.
split
(
'_'
)[
1
]
df_list
.
append
(
df
)
df
=
pd
.
concat
(
df_list
)
twoFstar
=
70
depths
=
np
.
unique
(
df
.
depth
.
values
)
recovery_fraction
=
[]
recovery_fraction_CI
=
[]
for
d
in
depths
:
twoFs
=
df
[
df
.
depth
==
d
].
twoF
.
values
N
=
len
(
twoFs
)
K
=
np
.
sum
(
twoFs
>
twoFstar
)
print
d
,
N
,
K
recovery_fraction
.
append
(
K
/
float
(
N
))
[
fLower
,
fUpper
]
=
binomialConfidenceInterval
(
N
,
K
)
recovery_fraction_CI
.
append
([
fLower
,
fUpper
])
yerr
=
np
.
abs
(
recovery_fraction
-
np
.
array
(
recovery_fraction_CI
).
T
)
fig
,
ax
=
plt
.
subplots
()
ax
.
errorbar
(
depths
,
recovery_fraction
,
yerr
=
yerr
,
fmt
=
'sr'
,
marker
=
's'
,
ms
=
2
,
capsize
=
1
,
capthick
=
0.5
,
elinewidth
=
0.5
,
label
=
'Monte-Carlo result'
,
zorder
=
10
)
fname
=
'analytic_data_{}.txt'
.
format
(
twoFstar
)
if
os
.
path
.
isfile
(
fname
):
depths_smooth
,
recovery_analytic
=
np
.
loadtxt
(
fname
)
else
:
depths_smooth
=
np
.
linspace
(
10
,
550
,
100
)
recovery_analytic
=
[]
for
d
in
tqdm
(
depths_smooth
):
recovery_analytic
.
append
(
Recovery
(
Tspan
,
d
,
twoFstar
))
np
.
savetxt
(
fname
,
np
.
array
([
depths_smooth
,
recovery_analytic
]))
depths_smooth
=
np
.
concatenate
(([
0
],
depths_smooth
))
recovery_analytic
=
np
.
concatenate
(([
1
],
recovery_analytic
))
ax
.
plot
(
depths_smooth
,
recovery_analytic
,
'-k'
,
label
=
'Theoretical maximum'
)
ax
.
set_ylim
(
0
,
1.05
)
ax
.
set_xlabel
(
r
'Sensitivity depth'
,
size
=
10
)
ax
.
set_ylabel
(
r
'Recovered fraction'
,
size
=
10
)
ax
.
legend
(
loc
=
1
,
frameon
=
False
)
fig
.
tight_layout
()
fig
.
savefig
(
'allsky_recovery.png'
)
total_number_steps
=
6
*
50.
fig
,
ax
=
plt
.
subplots
()
ax
.
hist
(
df
.
runTime
/
total_number_steps
,
bins
=
50
)
ax
.
set_xlabel
(
'run-time per step [s]'
)
fig
.
tight_layout
()
fig
.
savefig
(
'runTimeHist.png'
)
Paper/AllSkyMC/runTimeHist.png
deleted
100644 → 0
View file @
afbb9815
19.5 KB
Paper/AllSkyMC/submitfile
deleted
100644 → 0
View file @
afbb9815
Executable=AllSkyMC_repeat.sh
Arguments=$(Cluster)_$(Process)
Universe=vanilla
Input=/dev/null
accounting_group = ligo.dev.o2.cw.explore.test
Output=CollectedOutput/out.$(Cluster).$(Process)
Error=CollectedOutput/err.$(Cluster).$(Process)
Log=CollectedOutput/log.$(Cluster).$(Process)
request_cpus = 1
request_memory = 16 GB
Queue 1
Paper/AllSkyMCNoiseOnly/AllSkyMCNoiseOnly_repeat.sh
deleted
100755 → 0
View file @
afbb9815
#!/bin/bash
.
/home/gregory.ashton/lalsuite-install/etc/lalapps-user-env.sh
export
PATH
=
"/home/gregory.ashton/anaconda2/bin:
$PATH
"
export
MPLCONFIGDIR
=
/home/gregory.ashton/.config/matplotlib
for
((
n
=
0
;
n<90
;
n++
))
do
/home/gregory.ashton/anaconda2/bin/python generate_data.py
"
$1
"
/local/user/gregory.ashton
--no-template-counting
--no-interactive
done
cp
/local/user/gregory.ashton/NoiseOnlyMCResults_
"
$1
"
.txt
$(
pwd
)
/CollectedOutput
Paper/AllSkyMCNoiseOnly/generate_data.py
deleted
100644 → 0
View file @
afbb9815
import
pyfstat
import
numpy
as
np
import
os
import
sys
import
time
ID
=
sys
.
argv
[
1
]
outdir
=
sys
.
argv
[
2
]
label
=
'run_{}'
.
format
(
ID
)
data_label
=
'{}_data'
.
format
(
label
)
results_file_name
=
'{}/NoiseOnlyMCResults_{}.txt'
.
format
(
outdir
,
ID
)
# Properties of the GW data
sqrtSX
=
1e-23
tstart
=
1000000000
Tspan
=
100
*
86400
tend
=
tstart
+
Tspan
# Fixed properties of the signal
F0_center
=
30
F1_center
=
-
1e-10
F2
=
0
tref
=
.
5
*
(
tstart
+
tend
)
VF0
=
VF1
=
100
DeltaF0
=
VF0
*
np
.
sqrt
(
3
)
/
(
np
.
pi
*
Tspan
)
DeltaF1
=
VF1
*
np
.
sqrt
(
45
/
4.
)
/
(
np
.
pi
*
Tspan
**
2
)
DeltaAlpha
=
0.02
DeltaDelta
=
0.02
nsteps
=
50
run_setup
=
[((
nsteps
,
0
),
20
,
False
),
((
nsteps
,
0
),
11
,
False
),
((
nsteps
,
0
),
6
,
False
),
((
nsteps
,
0
),
3
,
False
),
((
nsteps
,
nsteps
),
1
,
False
)]
h0
=
0
F0
=
F0_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaF0
F1
=
F1_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaF1
Alpha_center
=
np
.
random
.
uniform
(
DeltaAlpha
,
2
*
np
.
pi
-
DeltaAlpha
)
Delta_center
=
np
.
arccos
(
2
*
np
.
random
.
uniform
(
0
,
1
)
-
1
)
-
np
.
pi
/
2
Alpha
=
Alpha_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaAlpha
Delta
=
Delta_center
+
np
.
random
.
uniform
(
-
0.5
,
0.5
)
*
DeltaDelta
psi
=
np
.
random
.
uniform
(
-
np
.
pi
/
4
,
np
.
pi
/
4
)
phi
=
np
.
random
.
uniform
(
0
,
2
*
np
.
pi
)
cosi
=
np
.
random
.
uniform
(
-
1
,
1
)
data
=
pyfstat
.
Writer
(
label
=
data_label
,
outdir
=
outdir
,
tref
=
tref
,
tstart
=
tstart
,
F0
=
F0
,
F1
=
F1
,
F2
=
F2
,
duration
=
Tspan
,
Alpha
=
Alpha
,
Delta
=
Delta
,
h0
=
h0
,
sqrtSX
=
sqrtSX
,
psi
=
psi
,
phi
=
phi
,
cosi
=
cosi
,
detector
=
'H1,L1'
)
data
.
make_data
()
startTime
=
time
.
time
()
theta_prior
=
{
'F0'
:
{
'type'
:
'unif'
,
'lower'
:
F0_center
-
DeltaF0
,
'upper'
:
F0_center
+
DeltaF0
},
'F1'
:
{
'type'
:
'unif'
,
'lower'
:
F1_center
-
DeltaF1
,
'upper'
:
F1_center
+
DeltaF1
},
'F2'
:
F2
,
'Alpha'
:
{
'type'
:
'unif'
,
'lower'
:
Alpha_center
-
DeltaAlpha
,
'upper'
:
Alpha_center
+
DeltaAlpha
},
'Delta'
:
{
'type'
:
'unif'
,
'lower'
:
Delta_center
-
DeltaDelta
,
'upper'
:
Delta_center
+
DeltaDelta
},
}
ntemps
=
2
log10temperature_min
=
-
1
nwalkers
=
100
mcmc
=
pyfstat
.
MCMCFollowUpSearch
(
label
=
label
,
outdir
=
outdir
,
sftfilepath
=
'{}/*{}*sft'
.
format
(
outdir
,
data_label
),
theta_prior
=
theta_prior
,
tref
=
tref
,
minStartTime
=
tstart
,
maxStartTime
=
tend
,
nwalkers
=
nwalkers
,
ntemps
=
ntemps
,
log10temperature_min
=
log10temperature_min
)
mcmc
.
run
(
run_setup
=
run_setup
,
create_plots
=
False
,
log_table
=
False
,
gen_tex_table
=
False
)
d
,
maxtwoF
=
mcmc
.
get_max_twoF
()
dF0
=
F0
-
d
[
'F0'
]
dF1
=
F1
-
d
[
'F1'
]
runTime
=
time
.
time
()
-
startTime
with
open
(
results_file_name
,
'a'
)
as
f
:
f
.
write
(
'{:1.8e} {:1.8e} {:1.8e} {}
\n
'
.
format
(
dF0
,
dF1
,
maxtwoF
,
runTime
))
os
.
system
(
'rm {}/*{}*'
.
format
(
outdir
,
label
))
Paper/AllSkyMCNoiseOnly/generate_table.py
deleted
100644 → 0
View file @
afbb9815
import
pyfstat
import
numpy
as
np
outdir
=
'data'
label
=
'allsky_setup'
data_label
=
'{}_data'
.
format
(
label
)
# Properties of the GW data
sqrtSX
=
2e-23
tstart
=
1000000000
Tspan
=
100
*
86400
tend
=
tstart
+
Tspan
# Fixed properties of the signal
F0_center
=
30
F1_center
=
1e-10
F2
=
0
tref
=
.
5
*
(
tstart
+
tend
)
VF0
=
VF1
=
100
DeltaF0
=
VF0
*
np
.
sqrt
(
3
)
/
(
np
.
pi
*
Tspan
)
DeltaF1
=
VF1
*
np
.
sqrt
(
45
/
4.
)
/
(
np
.
pi
*
Tspan
**
2
)
DeltaAlpha
=
0.05
DeltaDelta
=
0.05
depth
=
100
nsteps
=
50
run_setup
=
[((
nsteps
,
0
),
20
,
False
),
((
nsteps
,
0
),
11
,
False
),
((
nsteps
,
0
),
6
,
False
),
((
nsteps
,
0
),
3
,
False
),
((
nsteps
,
nsteps
),
1
,
False
)]
h0
=
sqrtSX
/
float
(
depth
)
r
=
np
.
random
.
uniform
(
0
,
1
)
theta
=
np
.
random
.
uniform
(
0
,
2
*
np
.
pi
)
F0
=
F0_center
+
3
*
np
.
sqrt
(
r
)
*
np
.
cos
(
theta
)
/
(
np
.
pi
**
2
*
Tspan
**
2
)
F1
=
F1_center
+
45
*
np
.
sqrt
(
r
)
*
np
.
sin
(
theta
)
/
(
4
*
np
.
pi
**
2
*
Tspan
**
4
)
Alpha
=
0
Delta
=
0
psi
=
np
.
random
.
uniform
(
-
np
.
pi
/
4
,
np
.
pi
/
4
)
phi
=
np
.
random
.
uniform
(
0
,
2
*
np
.
pi
)
cosi
=
np
.
random
.
uniform
(
-
1
,
1
)
data
=
pyfstat
.
Writer
(
label
=
data_label
,
outdir
=
outdir
,
tref
=
tref
,
tstart
=
tstart
,
F0
=
F0
,
F1
=
F1
,
F2
=
F2
,
duration
=
Tspan
,
Alpha
=
Alpha
,
Delta
=
Delta
,
h0
=
h0
,
sqrtSX
=
sqrtSX
,
psi
=
psi
,
phi
=
phi
,
cosi
=
cosi
,
detector
=
'H1,L1'
)
data
.
make_data
()
predicted_twoF
=
data
.
predict_fstat
()
theta_prior
=
{
'F0'
:
{
'type'
:
'unif'
,
'lower'
:
F0
-
DeltaF0
/
2.
,
'upper'
:
F0
+
DeltaF0
/
2.
},
'F1'
:
{
'type'
:
'unif'
,
'lower'
:
F1
-
DeltaF1
/
2.
,
'upper'
:
F1
+
DeltaF1
/
2.
},
'F2'
:
F2
,
'Alpha'
:
{
'type'
:
'unif'
,
'lower'
:
Alpha
-
DeltaAlpha
/
2.
,
'upper'
:
Alpha
+
DeltaAlpha
/
2.
},
'Delta'
:
{
'type'
:
'unif'
,
'lower'
:
Delta
-
DeltaDelta
/
2.
,
'upper'
:
Delta
+
DeltaDelta
/
2.
},
}
ntemps
=
1
log10temperature_min
=
-
1
nwalkers
=
100