Skip to content
Snippets Groups Projects
Commit cd7050b8 authored by Gregory Ashton's avatar Gregory Ashton
Browse files

Adds initial version of the calculate p-value routine

parent 6d3e5200
No related branches found
No related tags found
No related merge requests found
......@@ -1363,6 +1363,54 @@ class MCMCSearch(BaseSearchClass):
print(' {:10s} = {:1.9e} +/- {:1.9e}'.format(
k, median_std_d[k], median_std_d[k+'_std']))
def CF_twoFmax(self, theta, twoFmax, ntrials):
Fmax = twoFmax/2.0
return (np.exp(1j*theta*twoFmax)*ntrials/2.0
* Fmax*np.exp(-Fmax)*(1-(1+Fmax)*np.exp(-Fmax))**(ntrials-1))
def pdf_twoFhat(self, twoFhat, nglitch, ntrials, twoFmax=100, dtwoF=0.1):
if np.ndim(ntrials) == 0:
ntrials = np.zeros(nglitch+1) + ntrials
twoFmax_int = np.arange(0, twoFmax, dtwoF)
theta_int = np.arange(-1/dtwoF, 1./dtwoF, 1./twoFmax)
CF_twoFmax_theta = np.array(
[[np.trapz(self.CF_twoFmax(t, twoFmax_int, ntrial), twoFmax_int)
for t in theta_int]
for ntrial in ntrials])
CF_twoFhat_theta = np.prod(CF_twoFmax_theta, axis=0)
pdf = (1/(2*np.pi)) * np.array(
[np.trapz(np.exp(-1j*theta_int*twoFhat_val)
* CF_twoFhat_theta, theta_int) for twoFhat_val in twoFhat])
return pdf.real
def p_val_twoFhat(self, twoFhat, ntrials, twoFhatmax=500, Npoints=1000):
""" Caluculate the p-value for the given twoFhat in Gaussian noise
Parameters
----------
twoFhat: float
The observed twoFhat value
ntrials: int, array of len Nglitch+1
The number of trials for each glitch+1
"""
twoFhats = np.linspace(twoFhat, twoFhatmax, Npoints)
pdf = self.pdf_twoFhat(twoFhats, self.nglitch, ntrials)
return np.trapz(pdf, twoFhats)
def get_p_value(self, delta_F0, time_trials=0):
""" Get's the p-value for the maximum twoFhat value """
d, max_twoF = self.get_max_twoF()
if self.nglitch == 1:
tglitches = [d['tglitch']]
else:
tglitches = [d['tglitch_{}'.format(i)] for i in range(self.nglitch)]
tbounderies = [self.tstart] + tglitches + [self.tend]
deltaTs = np.diff(tbounderies)
ntrials = [time_trials + delta_F0 * dT for dT in deltaTs]
p_val = self.p_val_twoFhat(max_twoF, ntrials)
print 'p-value = {}'.format(p_val)
return p_val
class MCMCGlitchSearch(MCMCSearch):
""" MCMC search using the SemiCoherentGlitchSearch """
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment