Skip to content
Snippets Groups Projects
Select Git revision
  • 0188cda130172bef31f2bc849a92dbcc307615e4
  • master default
2 results

resources.py

Blame
  • Forked from finesse / pykat
    Source project has a limited visibility.
    ataprint.cpp 60.66 KiB
    /*
     * ataprint.c
     *
     * Home page of code is: http://smartmontools.sourceforge.net
     *
     * Copyright (C) 2002-4 Bruce Allen <smartmontools-support@lists.sourceforge.net>
     * Copyright (C) 1999-2000 Michael Cornwell <cornwell@acm.org>
     *
     * This program is free software; you can redistribute it and/or modify
     * it under the terms of the GNU General Public License as published by
     * the Free Software Foundation; either version 2, or (at your option)
     * any later version.
     *
     * You should have received a copy of the GNU General Public License
     * (for example COPYING); if not, write to the Free
     * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
     *
     * This code was originally developed as a Senior Thesis by Michael Cornwell
     * at the Concurrent Systems Laboratory (now part of the Storage Systems
     * Research Center), Jack Baskin School of Engineering, University of
     * California, Santa Cruz. http://ssrc.soe.ucsc.edu/
     *
     */
    
    #include <ctype.h>
    #include <stdio.h>
    #include <string.h>
    #include "atacmdnames.h"
    #include "atacmds.h"
    #include "ataprint.h"
    #include "smartctl.h"
    #include "int64.h"
    #include "extern.h"
    #include "utility.h"
    #include "knowndrives.h"
    #include "config.h"
    
    const char *ataprint_c_cvsid="$Id: ataprint.cpp,v 1.156 2004/09/10 04:13:41 ballen4705 Exp $"
    ATACMDNAMES_H_CVSID ATACMDS_H_CVSID ATAPRINT_H_CVSID CONFIG_H_CVSID EXTERN_H_CVSID INT64_H_CVSID KNOWNDRIVES_H_CVSID SMARTCTL_H_CVSID UTILITY_H_CVSID;
    
    // for passing global control variables
    extern smartmonctrl *con;
    
    // to hold onto exit code for atexit routine
    extern int exitstatus;
    
    // Copies n bytes (or n-1 if n is odd) from in to out, but swaps adjacents
    // bytes.
    void swapbytes(char *out, const char *in, size_t n)
    {
      size_t i;
    
      for (i = 0; i < n; i += 2) {
        out[i]   = in[i+1];
        out[i+1] = in[i];
      }
    }
    
    // Copies in to out, but removes leading and trailing whitespace.
    void trim(char *out, const char *in)
    {
      int i, first, last;
    
      // Find the first non-space character (maybe none).
      first = -1;
      for (i = 0; in[i]; i++)
        if (!isspace((int)in[i])) {
          first = i;
          break;
        }
    
      if (first == -1) {
        // There are no non-space characters.
        out[0] = '\0';
        return;
      }
    
      // Find the last non-space character.
      for (i = strlen(in)-1; i >= first && isspace((int)in[i]); i--)
        ;
      last = i;
    
      strncpy(out, in+first, last-first+1);
      out[last-first+1] = '\0';
    }
    
    // Convenience function for formatting strings from ata_identify_device
    void formatdriveidstring(char *out, const char *in, int n)
    {
      char tmp[65];
    
      n = n > 64 ? 64 : n;
      swapbytes(tmp, in, n);
      tmp[n] = '\0';
      trim(out, tmp);
    }
    
    // Function for printing ASCII byte-swapped strings, skipping white
    // space. Please note that this is needed on both big- and
    // little-endian hardware.
    void printswap(char *output, char *in, unsigned int n){
      formatdriveidstring(output, in, n);
      if (*output)
        pout("%s\n", output);
      else
        pout("[No Information Found]\n");
    }
    
    /* For the given Command Register (CR) and Features Register (FR), attempts
     * to construct a string that describes the contents of the Status
     * Register (ST) and Error Register (ER).  The string is dynamically allocated
     * memory and the return value is a pointer to this string.  It is up to the
     * caller to free this memory.  If there is insufficient memory or if the
     * meanings of the flags of the error register are not known for the given
     * command then it returns NULL.
     *
     * The meanings of the flags of the error register for all commands are
     * described in the ATA spec and could all be supported here in theory.
     * Currently, only a few commands are supported (those that have been seen
     * to produce errors).  If many more are to be added then this function
     * should probably be redesigned.
     */
    char *construct_st_er_desc(struct ata_smart_errorlog_struct *data) {
      unsigned char CR=data->commands[4].commandreg;
      unsigned char FR=data->commands[4].featuresreg;
      unsigned char ST=data->error_struct.status;
      unsigned char ER=data->error_struct.error_register;
      char *s;
      const char *error_flag[8];
      int i, print_lba=0, print_sector=0;
    
      // Set of character strings corresponding to different error codes.
      // Please keep in alphabetic order if you add more.
      const char  *abrt  = "ABRT";  // ABORTED
     const char   *amnf  = "AMNF";  // ADDRESS MARK NOT FOUND
     const char   *ccto  = "CCTO";  // COMMAND COMPLETTION TIMED OUT
     const char   *eom   = "EOM";   // END OF MEDIA
     const char   *icrc  = "ICRC";  // INTERFACE CRC ERROR
     const char   *idnf  = "IDNF";  // ID NOT FOUND
     const char   *ili   = "ILI";   // MEANING OF THIS BIT IS COMMAND-SET SPECIFIC
     const char   *mc    = "MC";    // MEDIA CHANGED 
     const char   *mcr   = "MCR";   // MEDIA CHANGE REQUEST
     const char   *nm    = "NM";    // NO MEDIA
     const char   *obs   = "obs";   // OBSOLETE
     const char   *tk0nf = "TK0NF"; // TRACK 0 NOT FOUND
     const char   *unc   = "UNC";   // UNCORRECTABLE
     const char   *wp    = "WP";    // WRITE PROTECTED
    
      /* If for any command the Device Fault flag of the status register is
       * not used then used_device_fault should be set to 0 (in the CR switch
       * below)
       */
      int uses_device_fault = 1;
    
      /* A value of NULL means that the error flag isn't used */
      for (i = 0; i < 8; i++)
        error_flag[i] = NULL;
    
      switch (CR) {
      case 0x10:  // RECALIBRATE
        error_flag[2] = abrt;
        error_flag[1] = tk0nf;
        break;
      case 0x20:  /* READ SECTOR(S) */
      case 0x21:  // READ SECTOR(S)
      case 0x24:  // READ SECTOR(S) EXT
      case 0xC4:  /* READ MULTIPLE */
      case 0x29:  // READ MULTIPLE EXT
        error_flag[6] = unc;
        error_flag[5] = mc;
        error_flag[4] = idnf;
        error_flag[3] = mcr;
        error_flag[2] = abrt;
        error_flag[1] = nm;
        error_flag[0] = amnf;
        print_lba=1;
        break;
      case 0x22:  // READ LONG (with retries)
      case 0x23:  // READ LONG (without retries)
        error_flag[4] = idnf;
        error_flag[2] = abrt;
        error_flag[0] = amnf;
        print_lba=1;
        break;
      case 0x2a:  // READ STREAM DMA
      case 0x2b:  // READ STREAM PIO
        if (CR==0x2a)
          error_flag[7] = icrc;
        error_flag[6] = unc;
        error_flag[5] = mc;
        error_flag[4] = idnf;
        error_flag[3] = mcr;
        error_flag[2] = abrt;
        error_flag[1] = nm;
        error_flag[0] = ccto;
        print_lba=1;
        print_sector=(int)data->error_struct.sector_count;
        break;
      case 0x3A:  // WRITE STREAM DMA
      case 0x3B:  // WRITE STREAM PIO
        if (CR==0x3A)
          error_flag[7] = icrc;
        error_flag[6] = wp;
        error_flag[5] = mc;
        error_flag[4] = idnf;
        error_flag[3] = mcr;
        error_flag[2] = abrt;
        error_flag[1] = nm;
        error_flag[0] = ccto;
        print_lba=1;
        print_sector=(int)data->error_struct.sector_count;
        break;
      case 0x25:  /* READ DMA EXT */
      case 0x26:  // READ DMA QUEUED EXT
      case 0xC7:  // READ DMA QUEUED
      case 0xC8:  /* READ DMA */
      case 0xC9:
        error_flag[7] = icrc;
        error_flag[6] = unc;
        error_flag[5] = mc;
        error_flag[4] = idnf;
        error_flag[3] = mcr;
        error_flag[2] = abrt;
        error_flag[1] = nm;
        error_flag[0] = amnf;
        print_lba=1;
        if (CR==0x25 || CR==0xC8)
          print_sector=(int)data->error_struct.sector_count;
        break;
      case 0x30:  /* WRITE SECTOR(S) */
      case 0x31:  // WRITE SECTOR(S)
      case 0x34:  // WRITE SECTOR(S) EXT
      case 0xC5:  /* WRITE MULTIPLE */
      case 0x39:  // WRITE MULTIPLE EXT
      case 0xCE:  // WRITE MULTIPLE FUA EXT
        error_flag[6] = wp;
        error_flag[5] = mc;
        error_flag[4] = idnf;
        error_flag[3] = mcr;
        error_flag[2] = abrt;
        error_flag[1] = nm;
        print_lba=1;
        break;
      case 0x32:  // WRITE LONG (with retries)
      case 0x33:  // WRITE LONG (without retries)
        error_flag[4] = idnf;
        error_flag[2] = abrt;
        print_lba=1;
        break;
      case 0x3C:  // WRITE VERIFY
        error_flag[6] = unc;
        error_flag[4] = idnf;
        error_flag[2] = abrt;
        error_flag[0] = amnf;
        print_lba=1;
        break;
      case 0x40: // READ VERIFY SECTOR(S) with retries
      case 0x41: // READ VERIFY SECTOR(S) without retries
      case 0x42: // READ VERIFY SECTOR(S) EXT
        error_flag[6] = unc;
        error_flag[5] = mc;
        error_flag[4] = idnf;
        error_flag[3] = mcr;
        error_flag[2] = abrt;
        error_flag[1] = nm;
        error_flag[0] = amnf;
        print_lba=1;
        break;
      case 0xA0:  /* PACKET */
        /* Bits 4-7 are all used for sense key (a 'command packet set specific error
         * indication' according to the ATA/ATAPI-7 standard), so "Sense key" will
         * be repeated in the error description string if more than one of those
         * bits is set.
         */
        error_flag[7] = "Sense key (bit 3)",
        error_flag[6] = "Sense key (bit 2)",
        error_flag[5] = "Sense key (bit 1)",
        error_flag[4] = "Sense key (bit 0)",
        error_flag[2] = abrt;
        error_flag[1] = eom;
        error_flag[0] = ili;
        break;
      case 0xA1:  /* IDENTIFY PACKET DEVICE */
      case 0xEF:  /* SET FEATURES */
      case 0x00:  /* NOP */
      case 0xC6:  /* SET MULTIPLE MODE */
        error_flag[2] = abrt;
        break;
      case 0x2F:  // READ LOG EXT
        error_flag[6] = unc;
        error_flag[4] = idnf;
        error_flag[2] = abrt;
        error_flag[0] = obs;
        break;
      case 0x3F:  // WRITE LOG EXT
        error_flag[4] = idnf;
        error_flag[2] = abrt;
        error_flag[0] = obs;
        break;
      case 0xB0:  /* SMART */
        switch(FR) {
        case 0xD0:  // SMART READ DATA
        case 0xD1:  // SMART READ ATTRIBUTE THRESHOLDS
        case 0xD5:  /* SMART READ LOG */
          error_flag[6] = unc;
          error_flag[4] = idnf;
          error_flag[2] = abrt;
          error_flag[0] = obs;
          break;
        case 0xD6:  /* SMART WRITE LOG */
          error_flag[4] = idnf;
          error_flag[2] = abrt;
          error_flag[0] = obs;
          break;
        case 0xD2:  // Enable/Disable Attribute Autosave
        case 0xD3:  // SMART SAVE ATTRIBUTE VALUES (ATA-3)
        case 0xD8:  // SMART ENABLE OPERATIONS
        case 0xD9:  /* SMART DISABLE OPERATIONS */
        case 0xDA:  /* SMART RETURN STATUS */
        case 0xDB:  // Enable/Disable Auto Offline (SFF)
          error_flag[2] = abrt;
          break;
        case 0xD4:  // SMART EXECUTE IMMEDIATE OFFLINE
          error_flag[4] = idnf;
          error_flag[2] = abrt;
          break;
        default:
          return NULL;
          break;
        }
        break;
      case 0xB1:  /* DEVICE CONFIGURATION */
        switch (FR) {
        case 0xC0:  /* DEVICE CONFIGURATION RESTORE */
          error_flag[2] = abrt;
          break;
        default:
          return NULL;
          break;
        }
        break;
      case 0xCA:  /* WRITE DMA */
      case 0xCB:
      case 0x35:  // WRITE DMA EXT
      case 0x3D:  // WRITE DMA FUA EXT
      case 0xCC:  // WRITE DMA QUEUED
      case 0x36:  // WRITE DMA QUEUED EXT
      case 0x3E:  // WRITE DMA QUEUED FUA EXT
        error_flag[7] = icrc;
        error_flag[6] = wp;
        error_flag[5] = mc;
        error_flag[4] = idnf;
        error_flag[3] = mcr;
        error_flag[2] = abrt;
        error_flag[1] = nm;
        error_flag[0] = amnf;
        print_lba=1;
        if (CR==0x35)
          print_sector=(int)data->error_struct.sector_count;
        break;
      case 0xE4: // READ BUFFER
      case 0xE8: // WRITE BUFFER
        error_flag[2] = abrt;
        break;
      default:
        return NULL;
      }
    
      /* 256 bytes -- that'll be plenty (OK, this is lazy!) */
      if (!(s = (char *)malloc(256)))
        return s;
    
      s[0] = '\0';
    
      /* We ignore any status flags other than Device Fault and Error */
    
      if (uses_device_fault && (ST & (1 << 5))) {
        strcat(s, "Device Fault");
        if (ST & 1)  // Error flag
          strcat(s, "; ");
      }
      if (ST & 1) {  // Error flag
        int count = 0;
    
        strcat(s, "Error: ");
        for (i = 7; i >= 0; i--)
          if ((ER & (1 << i)) && (error_flag[i])) {
            if (count++ > 0)
               strcat(s, ", ");
            strcat(s, error_flag[i]);
          }
      }
    
      // If the error was a READ or WRITE error, print the Logical Block
      // Address (LBA) at which the read or write failed.
      if (print_lba) {
        char tmp[128];
        int lba;
    
        // bits 24-27: bits 0-3 of DH
        lba   = 0xf & data->error_struct.drive_head;
        lba <<= 8;
        // bits 16-23: CH
        lba  |= data->error_struct.cylinder_high;
        lba <<= 8;
        // bits 8-15:  CL
        lba  |= data->error_struct.cylinder_low;
        lba <<= 8;
        // bits 0-7:   SN
        lba  |= data->error_struct.sector_number;
    
        // print number of sectors, if known, and append to print string
        if (print_sector) {
          snprintf(tmp, 128, " %d sectors", print_sector);
          strcat(s, tmp);
        }
    
        // print LBA, and append to print string
        snprintf(tmp, 128, " at LBA = 0x%08x = %d", lba, lba);
        strcat(s, tmp);
      }
    
      return s;
    }
    
    // This returns the capacity of a disk drive and also prints this into
    // a string, using comma separators to make it easier to read.  If the
    // drive doesn't support LBA addressing or has no user writable
    // sectors (eg, CDROM or DVD) then routine returns zero.
    uint64_t determine_capacity(struct ata_identify_device *drive, char *pstring){
    
      unsigned short command_set_2  = drive->command_set_2;
      unsigned short capabilities_0 = drive->words047_079[49-47];
      unsigned short sects_16       = drive->words047_079[60-47];
      unsigned short sects_32       = drive->words047_079[61-47];
      unsigned short lba_16         = drive->words088_255[100-88];
      unsigned short lba_32         = drive->words088_255[101-88];
      unsigned short lba_48         = drive->words088_255[102-88];
      unsigned short lba_64         = drive->words088_255[103-88];
      uint64_t capacity_short=0, capacity=0, threedigits, power_of_ten;
      int started=0,k=1000000000;
      
      // if drive supports LBA addressing, determine 32-bit LBA capacity
      if (capabilities_0 & 0x0200) {
        capacity_short = (unsigned int)sects_32 << 16 | 
                         (unsigned int)sects_16 << 0  ;
        
        // if drive supports 48-bit addressing, determine THAT capacity
        if ((command_set_2 & 0xc000) == 0x4000 && (command_set_2 & 0x0400))
          capacity = (uint64_t)lba_64 << 48 | 
    	         (uint64_t)lba_48 << 32 |
    	         (uint64_t)lba_32 << 16 | 
    	         (uint64_t)lba_16 << 0  ;
        
        // choose the larger of the two possible capacities
        if (capacity_short>capacity)
          capacity=capacity_short;
      }
    
      // turn sectors into bytes
      capacity_short = (capacity *= 512);
      
      // print with comma separators.  I know this is anglo-centric:
      // tell me what to change to use LOCALE if you want.
      power_of_ten =  k;
      power_of_ten *= k;
      
      for (k=0; k<7; k++) {
        threedigits = capacity/power_of_ten;
        capacity   -= threedigits*power_of_ten;
        if (started)
          // we have already printed some digits
          pstring += sprintf(pstring, ",%03"PRIu64, threedigits);
        else if (threedigits || k==6) {
          // these are the first digits that we are printing
          pstring += sprintf(pstring, "%"PRIu64, threedigits);
          started = 1;
        }
        if (k!=6)
          power_of_ten /= 1000;
      }
      
      return capacity_short;
    }
    
    void ataPrintDriveInfo (struct ata_identify_device *drive){
      int version, drivetype;
      const char *description;
      char unknown[64], timedatetz[DATEANDEPOCHLEN];
      unsigned short minorrev;
      char model[64], serial[64], firm[64], capacity[64];
      
    
      // print out model, serial # and firmware versions  (byte-swap ASCI strings)
      pout("Device Model:     ");
      printswap(model, (char *)drive->model,40);
    
      pout("Serial Number:    ");
      printswap(serial, (char *)drive->serial_no,20);
    
      pout("Firmware Version: ");
      printswap(firm, (char *)drive->fw_rev,8);
    
      if (determine_capacity(drive, capacity))
        pout("User Capacity:    %s bytes\n", capacity);
      
      // See if drive is recognized
      drivetype=lookupdrive(model, firm);
      pout("Device is:        %s\n", drivetype<0?
           "Not in smartctl database [for details use: -P showall]":
           "In smartctl database [for details use: -P show]");
    
      // now get ATA version info
      version=ataVersionInfo(&description,drive, &minorrev);
    
      // unrecognized minor revision code
      if (!description){
        if (!minorrev)
          sprintf(unknown, "Exact ATA specification draft version not indicated");
        else
          sprintf(unknown,"Not recognized. Minor revision code: 0x%02hx", minorrev);
        description=unknown;
      }
      
      
      // SMART Support was first added into the ATA/ATAPI-3 Standard with
      // Revision 3 of the document, July 25, 1995.  Look at the "Document
      // Status" revision commands at the beginning of
      // http://www.t13.org/project/d2008r6.pdf to see this.  So it's not
      // enough to check if we are ATA-3.  Version=-3 indicates ATA-3
      // BEFORE Revision 3.
      pout("ATA Version is:   %d\n",(int)abs(version));
      pout("ATA Standard is:  %s\n",description);
      
      // print current time and date and timezone
      dateandtimezone(timedatetz);
      pout("Local Time is:    %s\n", timedatetz);
    
      // Print warning message, if there is one
      if (drivetype>=0 && knowndrives[drivetype].warningmsg)
        pout("\n==> WARNING: %s\n\n", knowndrives[drivetype].warningmsg);
    
      if (version>=3)
        return;
      
      pout("SMART is only available in ATA Version 3 Revision 3 or greater.\n");
      pout("We will try to proceed in spite of this.\n");
      return;
    }
    
    
    const char *OfflineDataCollectionStatus(unsigned char status_byte){
      unsigned char stat=status_byte & 0x7f;
      
      switch(stat){
      case 0x00:
        return "was never started";
      case 0x02:
        return "was completed without error";
      case 0x03:
        if (status_byte == 0x03)
          return "is in progress";
        else
          return "is in a Reserved state";
      case 0x04:
        return "was suspended by an interrupting command from host";
      case 0x05:
        return "was aborted by an interrupting command from host";
      case 0x06:
        return "was aborted by the device with a fatal error";
      default:
        if (stat >= 0x40)
          return "is in a Vendor Specific state\n";
        else
          return "is in a Reserved state\n";
      }
    }
      
      
      /*  prints verbose value Off-line data collection status byte */
      void PrintSmartOfflineStatus(struct ata_smart_values *data){
      
      pout("Offline data collection status:  (0x%02x)\t",
           (int)data->offline_data_collection_status);
        
      // Off-line data collection status byte is not a reserved
      // or vendor specific value
      pout("Offline data collection activity\n"
           "\t\t\t\t\t%s.\n", OfflineDataCollectionStatus(data->offline_data_collection_status));
      
      // Report on Automatic Data Collection Status.  Only IBM documents
      // this bit.  See SFF 8035i Revision 2 for details.
      if (data->offline_data_collection_status & 0x80)
        pout("\t\t\t\t\tAuto Offline Data Collection: Enabled.\n");
      else
        pout("\t\t\t\t\tAuto Offline Data Collection: Disabled.\n");
      
      return;
    }
    
    void PrintSmartSelfExecStatus(struct ata_smart_values *data)
    {
       pout("Self-test execution status:      ");
       
       switch (data->self_test_exec_status >> 4)
       {
          case 0:
            pout("(%4d)\tThe previous self-test routine completed\n\t\t\t\t\t",
                    (int)data->self_test_exec_status);
            pout("without error or no self-test has ever \n\t\t\t\t\tbeen run.\n");
            break;
           case 1:
             pout("(%4d)\tThe self-test routine was aborted by\n\t\t\t\t\t",
                     (int)data->self_test_exec_status);
             pout("the host.\n");
             break;
           case 2:
             pout("(%4d)\tThe self-test routine was interrupted\n\t\t\t\t\t",
                     (int)data->self_test_exec_status);
             pout("by the host with a hard or soft reset.\n");
             break;
           case 3:
              pout("(%4d)\tA fatal error or unknown test error\n\t\t\t\t\t",
                      (int)data->self_test_exec_status);
              pout("occurred while the device was executing\n\t\t\t\t\t");
              pout("its self-test routine and the device \n\t\t\t\t\t");
              pout("was unable to complete the self-test \n\t\t\t\t\t");
              pout("routine.\n");
              break;
           case 4:
              pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
                      (int)data->self_test_exec_status);
              pout("a test element that failed and the test\n\t\t\t\t\t");
              pout("element that failed is not known.\n");
              break;
           case 5:
              pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
                      (int)data->self_test_exec_status);
              pout("the electrical element of the test\n\t\t\t\t\t");
              pout("failed.\n");
              break;
           case 6:
              pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
                      (int)data->self_test_exec_status);
              pout("the servo (and/or seek) element of the \n\t\t\t\t\t");
              pout("test failed.\n");
              break;
           case 7:
              pout("(%4d)\tThe previous self-test completed having\n\t\t\t\t\t",
                      (int)data->self_test_exec_status);
              pout("the read element of the test failed.\n");
              break;
           case 15:
              pout("(%4d)\tSelf-test routine in progress...\n\t\t\t\t\t",
                      (int)data->self_test_exec_status);
              pout("%1d0%% of test remaining.\n", 
                      (int)(data->self_test_exec_status & 0x0f));
              break;
           default:
              pout("(%4d)\tReserved.\n",
                      (int)data->self_test_exec_status);
              break;
       }
            
    }
    
    
    
    void PrintSmartTotalTimeCompleteOffline ( struct ata_smart_values *data){
      pout("Total time to complete Offline \n");
      pout("data collection: \t\t (%4d) seconds.\n", 
           (int)data->total_time_to_complete_off_line);
    }
    
    
    
    void PrintSmartOfflineCollectCap(struct ata_smart_values *data){
      pout("Offline data collection\n");
      pout("capabilities: \t\t\t (0x%02x) ",
           (int)data->offline_data_collection_capability);
      
      if (data->offline_data_collection_capability == 0x00){
        pout("\tOffline data collection not supported.\n");
      } 
      else {
        pout( "%s\n", isSupportExecuteOfflineImmediate(data)?
              "SMART execute Offline immediate." :
              "No SMART execute Offline immediate.");
        
        pout( "\t\t\t\t\t%s\n", isSupportAutomaticTimer(data)? 
              "Auto Offline data collection on/off support.":
              "No Auto Offline data collection support.");
        
        pout( "\t\t\t\t\t%s\n", isSupportOfflineAbort(data)? 
              "Abort Offline collection upon new\n\t\t\t\t\tcommand.":
              "Suspend Offline collection upon new\n\t\t\t\t\tcommand.");
        
        pout( "\t\t\t\t\t%s\n", isSupportOfflineSurfaceScan(data)? 
              "Offline surface scan supported.":
              "No Offline surface scan supported.");
        
        pout( "\t\t\t\t\t%s\n", isSupportSelfTest(data)? 
              "Self-test supported.":
              "No Self-test supported.");
    
        pout( "\t\t\t\t\t%s\n", isSupportConveyanceSelfTest(data)? 
              "Conveyance Self-test supported.":
              "No Conveyance Self-test supported.");
    
        pout( "\t\t\t\t\t%s\n", isSupportSelectiveSelfTest(data)? 
              "Selective Self-test supported.":
              "No Selective Self-test supported.");
      }
    }
    
    
    
    void PrintSmartCapability ( struct ata_smart_values *data)
    {
       pout("SMART capabilities:            ");
       pout("(0x%04x)\t", (int)data->smart_capability);
       
       if (data->smart_capability == 0x00)
       {
           pout("Automatic saving of SMART data\t\t\t\t\tis not implemented.\n");
       } 
       else 
       {
            
          pout( "%s\n", (data->smart_capability & 0x01)? 
                  "Saves SMART data before entering\n\t\t\t\t\tpower-saving mode.":
                  "Does not save SMART data before\n\t\t\t\t\tentering power-saving mode.");
                    
          if ( data->smart_capability & 0x02 )
          {
              pout("\t\t\t\t\tSupports SMART auto save timer.\n");
          }
       }
    }
    
    void PrintSmartErrorLogCapability (struct ata_smart_values *data, struct ata_identify_device *identity)
    {
    
       pout("Error logging capability:       ");
        
       if ( isSmartErrorLogCapable(data, identity) )
       {
          pout(" (0x%02x)\tError logging supported.\n",
                   (int)data->errorlog_capability);
       }
       else {
           pout(" (0x%02x)\tError logging NOT supported.\n",
                    (int)data->errorlog_capability);
       }
    }
    
    void PrintSmartShortSelfTestPollingTime(struct ata_smart_values *data){
      pout("Short self-test routine \n");
      if (isSupportSelfTest(data))
        pout("recommended polling time: \t (%4d) minutes.\n", 
             (int)data->short_test_completion_time);
      else
        pout("recommended polling time: \t        Not Supported.\n");
    }
    
    void PrintSmartExtendedSelfTestPollingTime(struct ata_smart_values *data){
      pout("Extended self-test routine\n");
      if (isSupportSelfTest(data))
        pout("recommended polling time: \t (%4d) minutes.\n", 
             (int)data->extend_test_completion_time);
      else
        pout("recommended polling time: \t        Not Supported.\n");
    }
    
    void PrintSmartConveyanceSelfTestPollingTime(struct ata_smart_values *data){
      pout("Conveyance self-test routine\n");
      if (isSupportConveyanceSelfTest(data))
        pout("recommended polling time: \t (%4d) minutes.\n", 
             (int)data->conveyance_test_completion_time);
      else
        pout("recommended polling time: \t        Not Supported.\n");
    }
    
    // onlyfailed=0 : print all attribute values
    // onlyfailed=1:  just ones that are currently failed and have prefailure bit set
    // onlyfailed=2:  ones that are failed, or have failed with or without prefailure bit set
    void PrintSmartAttribWithThres (struct ata_smart_values *data, 
                                    struct ata_smart_thresholds_pvt *thresholds,
                                    int onlyfailed){
      int i;
      int needheader=1;
      char rawstring[64];
        
      // step through all vendor attributes
      for (i=0; i<NUMBER_ATA_SMART_ATTRIBUTES; i++){
        char *status;
        struct ata_smart_attribute *disk=data->vendor_attributes+i;
        struct ata_smart_threshold_entry *thre=thresholds->thres_entries+i;
        
        // consider only valid attributes (allowing some screw-ups in the
        // thresholds page data to slip by)
        if (disk->id){
          char *type, *update;
          int failednow,failedever;
          char attributename[64];
    
          failednow = (disk->current <= thre->threshold);
          failedever= (disk->worst   <= thre->threshold);
          
          // These break out of the loop if we are only printing certain entries...
          if (onlyfailed==1 && (!ATTRIBUTE_FLAGS_PREFAILURE(disk->flags) || !failednow))
            continue;
          
          if (onlyfailed==2 && !failedever)
            continue;
          
          // print header only if needed
          if (needheader){
            if (!onlyfailed){
              pout("SMART Attributes Data Structure revision number: %d\n",(int)data->revnumber);
              pout("Vendor Specific SMART Attributes with Thresholds:\n");
            }
            pout("ID# ATTRIBUTE_NAME          FLAG     VALUE WORST THRESH TYPE      UPDATED  WHEN_FAILED RAW_VALUE\n");
            needheader=0;
          }
          
          // is this Attribute currently failed, or has it ever failed?
          if (failednow)
            status="FAILING_NOW";
          else if (failedever)
            status="In_the_past";
          else
            status="    -";
    
          // Print name of attribute
          ataPrintSmartAttribName(attributename,disk->id, con->attributedefs);
          pout("%-28s",attributename);
    
          // printing line for each valid attribute
          type=ATTRIBUTE_FLAGS_PREFAILURE(disk->flags)?"Pre-fail":"Old_age";
          update=ATTRIBUTE_FLAGS_ONLINE(disk->flags)?"Always":"Offline";
    
          pout("0x%04x   %.3d   %.3d   %.3d    %-10s%-9s%-12s", 
                 (int)disk->flags, (int)disk->current, (int)disk->worst,
                 (int)thre->threshold, type, update, status);
    
          // print raw value of attribute
          ataPrintSmartAttribRawValue(rawstring, disk, con->attributedefs);
          pout("%s\n", rawstring);
          
          // print a warning if there is inconsistency here!
          if (disk->id != thre->id){
            char atdat[64],atthr[64];
            ataPrintSmartAttribName(atdat, disk->id, con->attributedefs);
            ataPrintSmartAttribName(atthr, thre->id, con->attributedefs);
            pout("%-28s<== Data Page      |  WARNING: PREVIOUS ATTRIBUTE HAS TWO\n",atdat);
            pout("%-28s<== Threshold Page |  INCONSISTENT IDENTITIES IN THE DATA\n",atthr);
          }
        }
      }
      if (!needheader) pout("\n");
    }
    
    void ataPrintGeneralSmartValues(struct ata_smart_values *data, struct ata_identify_device *drive){
      pout("General SMART Values:\n");
      
      PrintSmartOfflineStatus(data); 
      
      if (isSupportSelfTest(data)){
        PrintSmartSelfExecStatus (data);
      }
      
      PrintSmartTotalTimeCompleteOffline(data);
      PrintSmartOfflineCollectCap(data);
      PrintSmartCapability(data);
      
      PrintSmartErrorLogCapability(data, drive);
    
      pout( "\t\t\t\t\t%s\n", isGeneralPurposeLoggingCapable(drive)?
            "General Purpose Logging supported.":
            "No General Purpose Logging support.");
    
      if (isSupportSelfTest(data)){
        PrintSmartShortSelfTestPollingTime (data);
        PrintSmartExtendedSelfTestPollingTime (data);
      }
      if (isSupportConveyanceSelfTest(data))
        PrintSmartConveyanceSelfTestPollingTime (data);
      
      pout("\n");
    }
    
    int ataPrintLogDirectory(struct ata_smart_log_directory *data){
      int i;
      char *name;
    
      pout("SMART Log Directory Logging Version %d%s\n",
           data->logversion, data->logversion==1?" [multi-sector log support]":"");
      for (i=0; i<=255; i++){
        int numsect;
        
        // Directory log length
        numsect = i? data->entry[i-1].numsectors : 1;
        
        // If the log is not empty, what is it's name
        if (numsect){
          switch (i) {
          case 0:
            name="Log Directory"; break;
          case 1:
            name="Summary SMART error log"; break;
          case 2:
            name="Comprehensive SMART error log"; break;
          case 3:
            name="Extended Comprehensive SMART error log"; break;
          case 6:
            name="SMART self-test log"; break;
          case 7:
            name="Extended self-test log"; break;
          case 9:
            name="Selective self-test log"; break;
          case 0x20:
            name="Streaming performance log"; break;
          case 0x21:
            name="Write stream error log"; break;
          case 0x22:
            name="Read stream error log"; break;
          case 0x23:
            name="Delayed sector log"; break;
          default:
            if (0xa0<=i && i<=0xbf) 
              name="Device vendor specific log";
            else if (0x80<=i && i<=0x9f)
              name="Host vendor specific log";
            else
              name="Reserved log";
            break;
          }
    
          // print name and length of log
          pout("Log at address 0x%02x has %03d sectors [%s]\n",
               i, numsect, name);
        }
      }
      return 0;
    }
    
    // returns number of errors
    int ataPrintSmartErrorlog(struct ata_smart_errorlog *data){
      int k;
    
      pout("SMART Error Log Version: %d\n", (int)data->revnumber);
      
      // if no errors logged, return
      if (!data->error_log_pointer){
        pout("No Errors Logged\n\n");
        return 0;
      }
      PRINT_ON(con);
      // If log pointer out of range, return
      if (data->error_log_pointer>5){
        pout("Invalid Error Log index = 0x%02x (T13/1321D rev 1c "
             "Section 8.41.6.8.2.2 gives valid range from 1 to 5)\n\n",
             (int)data->error_log_pointer);
        return 0;
      }
    
      // Some internal consistency checking of the data structures
      if ((data->ata_error_count-data->error_log_pointer)%5 && con->fixfirmwarebug != FIX_SAMSUNG2) {
        pout("Warning: ATA error count %d inconsistent with error log pointer %d\n\n",
             data->ata_error_count,data->error_log_pointer);
      }
      
      // starting printing error log info
      if (data->ata_error_count<=5)
        pout( "ATA Error Count: %d\n", (int)data->ata_error_count);
      else
        pout( "ATA Error Count: %d (device log contains only the most recent five errors)\n",
               (int)data->ata_error_count);
      PRINT_OFF(con);
      pout("\tCR = Command Register [HEX]\n"
           "\tFR = Features Register [HEX]\n"
           "\tSC = Sector Count Register [HEX]\n"
           "\tSN = Sector Number Register [HEX]\n"
           "\tCL = Cylinder Low Register [HEX]\n"
           "\tCH = Cylinder High Register [HEX]\n"
           "\tDH = Device/Head Register [HEX]\n"
           "\tDC = Device Command Register [HEX]\n"
           "\tER = Error register [HEX]\n"
           "\tST = Status register [HEX]\n"
           "Powered_Up_Time is measured from power on, and printed as\n"
           "DDd+hh:mm:SS.sss where DD=days, hh=hours, mm=minutes,\n"
           "SS=sec, and sss=millisec. It \"wraps\" after 49.710 days.\n\n");
      
      // now step through the five error log data structures (table 39 of spec)
      for (k = 4; k >= 0; k-- ) {
        char *st_er_desc;
    
        // The error log data structure entries are a circular buffer
        int j, i=(data->error_log_pointer+k)%5;
        struct ata_smart_errorlog_struct *elog=data->errorlog_struct+i;
        struct ata_smart_errorlog_error_struct *summary=&(elog->error_struct);
    
        // Spec says: unused error log structures shall be zero filled
        if (nonempty((unsigned char*)elog,sizeof(*elog))){
          // Table 57 of T13/1532D Volume 1 Revision 3
          char *msgstate;
          int bits=summary->state & 0x0f;
          int days = (int)summary->timestamp/24;
    
          switch (bits){
          case 0x00: msgstate="in an unknown state";break;
          case 0x01: msgstate="sleeping"; break;
          case 0x02: msgstate="in standby mode"; break;
          case 0x03: msgstate="active or idle"; break;
          case 0x04: msgstate="doing SMART Offline or Self-test"; break;
          default:   
            if (bits<0x0b)
              msgstate="in a reserved state";
            else
              msgstate="in a vendor specific state";
          }
    
          // See table 42 of ATA5 spec
          PRINT_ON(con);
          pout("Error %d occurred at disk power-on lifetime: %d hours (%d days + %d hours)\n",
                 (int)(data->ata_error_count+k-4), (int)summary->timestamp, days, (int)(summary->timestamp-24*days));
          PRINT_OFF(con);
          pout("  When the command that caused the error occurred, the device was %s.\n\n",msgstate);
          pout("  After command completion occurred, registers were:\n"
               "  ER ST SC SN CL CH DH\n"
               "  -- -- -- -- -- -- --\n"
               "  %02x %02x %02x %02x %02x %02x %02x",
               (int)summary->error_register,
               (int)summary->status,
               (int)summary->sector_count,
               (int)summary->sector_number,
               (int)summary->cylinder_low,
               (int)summary->cylinder_high,
               (int)summary->drive_head);
          // Add a description of the contents of the status and error registers
          // if possible
          st_er_desc = construct_st_er_desc(elog);
          if (st_er_desc) {
            pout("  %s", st_er_desc);
            free(st_er_desc);
          }
          pout("\n\n");
          pout("  Commands leading to the command that caused the error were:\n"
               "  CR FR SC SN CL CH DH DC   Powered_Up_Time  Command/Feature_Name\n"
               "  -- -- -- -- -- -- -- --  ----------------  --------------------\n");
          for ( j = 4; j >= 0; j--){
            struct ata_smart_errorlog_command_struct *thiscommand=elog->commands+j;
    
            // Spec says: unused data command structures shall be zero filled
            if (nonempty((unsigned char*)thiscommand,sizeof(*thiscommand))) {
    	  char timestring[32];
    	  
    	  // Convert integer milliseconds to a text-format string
    	  MsecToText(thiscommand->timestamp, timestring);
    	  
              pout("  %02x %02x %02x %02x %02x %02x %02x %02x  %16s  %s\n",
                   (int)thiscommand->commandreg,
                   (int)thiscommand->featuresreg,
                   (int)thiscommand->sector_count,
                   (int)thiscommand->sector_number,
                   (int)thiscommand->cylinder_low,
                   (int)thiscommand->cylinder_high,
                   (int)thiscommand->drive_head,
                   (int)thiscommand->devicecontrolreg,
    	       timestring,
                   look_up_ata_command(thiscommand->commandreg, thiscommand->featuresreg));
    	}
          }
          pout("\n");
        }
      }
      PRINT_ON(con);
      if (con->printing_switchable)
        pout("\n");
      PRINT_OFF(con);
      return data->ata_error_count;  
    }
    
    void ataPrintSelectiveSelfTestLog(struct ata_selective_self_test_log *log, struct ata_smart_values *sv) {
      int i,field1,field2;
      char *msg;
      char tmp[64];
      uint64_t maxl=0,maxr=0;
      uint64_t current=log->currentlba;
      uint64_t currentend=current+65535;
    
      // print data structure revision number
      pout("SMART Selective self-test log data structure revision number %d\n",(int)log->logversion);
      if (1 != log->logversion)
        pout("Warning: ATA Specification requires selective self-test log data structure revision number = 1\n");
      
      switch((sv->self_test_exec_status)>>4){
      case  0:msg="Completed";
        break;
      case  1:msg="Aborted_by_host";
        break;
      case  2:msg="Interrupted";
        break;
      case  3:msg="Fatal_error";
        break;
      case  4:msg="Completed_unknown_failure";
        break;
      case  5:msg="Completed_electrical_failure";
        break;
      case  6:msg="Completed_servo/seek_failure";
        break;
      case  7:msg="Completed_read_failure";
        break;
      case  8:msg="Completed_handling_damage??";
        break;
      case 15:msg="Self_test_in_progress";
        break;
      default:msg="Unknown_status ";
        break;
      }
    
      // find the number of columns needed for printing. If in use, the
      // start/end of span being read-scanned...
      if (log->currentspan>5) {
        maxl=current;
        maxr=currentend;
      }
      for (i=0; i<5; i++) {
        uint64_t start=log->span[i].start;
        uint64_t end  =log->span[i].end; 
        // ... plus max start/end of each of the five test spans.
        if (start>maxl)
          maxl=start;
        if (end > maxr)
          maxr=end;
      }
      
      // we need at least 7 characters wide fields to accomodate the
      // labels
      if ((field1=snprintf(tmp,64, "%"PRIu64, maxl))<7)
        field1=7;
      if ((field2=snprintf(tmp,64, "%"PRIu64, maxr))<7)
        field2=7;
    
      // now print the five test spans
      pout(" SPAN  %*s  %*s  CURRENT_TEST_STATUS\n", field1, "MIN_LBA", field2, "MAX_LBA");
    
      for (i=0; i<5; i++) {
        uint64_t start=log->span[i].start;
        uint64_t end=log->span[i].end;
        
        if ((i+1)==(int)log->currentspan)
          // this span is currently under test
          pout("    %d  %*"PRIu64"  %*"PRIu64"  %s [%01d0%% left] (%"PRIu64"-%"PRIu64")\n",
    	   i+1, field1, start, field2, end, msg,
    	   (int)(sv->self_test_exec_status & 0x7), current, currentend);
        else
          // this span is not currently under test
          pout("    %d  %*"PRIu64"  %*"PRIu64"  Not_testing\n",
    	   i+1, field1, start, field2, end);
      }  
      
      // if we are currently read-scanning, print LBAs and the status of
      // the read scan
      if (log->currentspan>5)
        pout("%5d  %*"PRIu64"  %*"PRIu64"  Read_scanning %s\n",
    	 (int)log->currentspan, field1, current, field2, currentend,
    	 OfflineDataCollectionStatus(sv->offline_data_collection_status));
      
      /* Print selective self-test flags.  Possible flag combinations are
         (numbering bits from 0-15):
         Bit-1 Bit-3   Bit-4
         Scan  Pending Active
         0     *       *       Don't scan
         1     0       0       Will carry out scan after selective test
         1     1       0       Waiting to carry out scan after powerup
         1     0       1       Currently scanning       
         1     1       1       Currently scanning
      */
      
      pout("Selective self-test flags (0x%x):\n", (unsigned int)log->flags);
      if (log->flags & SELECTIVE_FLAG_DOSCAN) {
        if (log->flags & SELECTIVE_FLAG_ACTIVE)
          pout("  Currently read-scanning the remainder of the disk.\n");
        else if (log->flags & SELECTIVE_FLAG_PENDING)
          pout("  Read-scan of remainder of disk interrupted; will resume %d min after power-up.\n",
    	   (int)log->pendingtime);
        else
          pout("  After scanning selected spans, read-scan remainder of disk.\n");
      }
      else
        pout("  After scanning selected spans, do NOT read-scan remainder of disk.\n");
      
      // print pending time
      pout("If Selective self-test is pending on power-up, resume after %d minute delay.\n",
           (int)log->pendingtime);
    
      return; 
    }
    
    // return value is:
    // bottom 8 bits: number of entries found where self-test showed an error
    // remaining bits: if nonzero, power on hours of last self-test where error was found
    int ataPrintSmartSelfTestlog(struct ata_smart_selftestlog *data,int allentries){
      int i,j,noheaderprinted=1;
      int retval=0, hours=0, testno=0;
    
      if (allentries)
        pout("SMART Self-test log structure revision number %d\n",(int)data->revnumber);
      if ((data->revnumber!=0x0001) && allentries && con->fixfirmwarebug != FIX_SAMSUNG)
        pout("Warning: ATA Specification requires self-test log structure revision number = 1\n");
      if (data->mostrecenttest==0){
        if (allentries)
          pout("No self-tests have been logged.  [To run self-tests, use: smartctl -t]\n\n");
        return 0;
      }
    
      // print log      
      for (i=20;i>=0;i--){    
        struct ata_smart_selftestlog_struct *log;
    
        // log is a circular buffer
        j=(i+data->mostrecenttest)%21;
        log=data->selftest_struct+j;
    
        if (nonempty((unsigned char*)log,sizeof(*log))){
          char *msgtest,*msgstat,percent[64],firstlba[64];
          int errorfound=0;
          
          // count entry based on non-empty structures -- needed for
          // Seagate only -- other vendors don't have blank entries 'in
          // the middle'
          testno++;
    
          // test name
          switch(log->selftestnumber){
          case   0: msgtest="Offline            "; break;
          case   1: msgtest="Short offline      "; break;
          case   2: msgtest="Extended offline   "; break;
          case   3: msgtest="Conveyance offline "; break;
          case   4: msgtest="Selective offline  "; break;
          case 127: msgtest="Abort offline test "; break;
          case 129: msgtest="Short captive      "; break;
          case 130: msgtest="Extended captive   "; break;
          case 131: msgtest="Conveyance captive "; break;
          case 132: msgtest="Selective captive  "; break;
          default:  
            if ( log->selftestnumber>=192 ||
                (log->selftestnumber>= 64 && log->selftestnumber<=126))
              msgtest="Vendor offline     ";
            else
              msgtest="Reserved offline   ";
          }
          
          // test status
          switch((log->selfteststatus)>>4){
          case  0:msgstat="Completed without error      "; break;
          case  1:msgstat="Aborted by host              "; break;
          case  2:msgstat="Interrupted (host reset)     "; break;
          case  3:msgstat="Fatal or unknown error       "; errorfound=1; break;
          case  4:msgstat="Completed: unknown failure   "; errorfound=1; break;
          case  5:msgstat="Completed: electrical failure"; errorfound=1; break;
          case  6:msgstat="Completed: servo/seek failure"; errorfound=1; break;
          case  7:msgstat="Completed: read failure      "; errorfound=1; break;
          case  8:msgstat="Completed: handling damage?? "; errorfound=1; break;
          case 15:msgstat="Self-test routine in progress"; break;
          default:msgstat="Unknown/reserved test status ";
          }
    
          retval+=errorfound;
          sprintf(percent,"%1d0%%",(log->selfteststatus)&0xf);
    
          // T13/1321D revision 1c: (Data structure Rev #1)
    
          //The failing LBA shall be the LBA of the uncorrectable sector
          //that caused the test to fail. If the device encountered more
          //than one uncorrectable sector during the test, this field
          //shall indicate the LBA of the first uncorrectable sector
          //encountered. If the test passed or the test failed for some
          //reason other than an uncorrectable sector, the value of this
          //field is undefined.
    
          // This is true in ALL ATA-5 specs
          
          if (!errorfound || log->lbafirstfailure==0xffffffff || log->lbafirstfailure==0x00000000)
            sprintf(firstlba,"%s","-");
          else      
            sprintf(firstlba,"%u",log->lbafirstfailure);
    
          // print out a header if needed
          if (noheaderprinted && (allentries || errorfound)){
            pout("Num  Test_Description    Status                  Remaining  LifeTime(hours)  LBA_of_first_error\n");
            noheaderprinted=0;
          }
          
          // print out an entry, either if we are printing all entries OR
          // if an error was found
          if (allentries || errorfound)
            pout("#%2d  %s %s %s  %8d         %s\n", testno, msgtest, msgstat, percent, (int)log->timestamp, firstlba);
    
          // keep track of time of most recent error
          if (errorfound && !hours)
            hours=log->timestamp;
        }
      }
      if (!allentries && retval)
        pout("\n");
    
      hours = hours << 8;
      return (retval | hours);
    }
    
    void ataPseudoCheckSmart ( struct ata_smart_values *data, 
                               struct ata_smart_thresholds_pvt *thresholds) {
      int i;
      int failed = 0;
      for (i = 0 ; i < NUMBER_ATA_SMART_ATTRIBUTES ; i++) {
        if (data->vendor_attributes[i].id &&   
            thresholds->thres_entries[i].id &&
            ATTRIBUTE_FLAGS_PREFAILURE(data->vendor_attributes[i].flags) &&
            (data->vendor_attributes[i].current <= thresholds->thres_entries[i].threshold) &&
            (thresholds->thres_entries[i].threshold != 0xFE)){
          pout("Attribute ID %d Failed\n",(int)data->vendor_attributes[i].id);
          failed = 1;
        } 
      }   
      pout("%s\n", ( failed )?
             "SMART overall-health self-assessment test result: FAILED!\n"
             "Drive failure expected in less than 24 hours. SAVE ALL DATA":
             "SMART overall-health self-assessment test result: PASSED");
    }
    
    
    // Compares failure type to policy in effect, and either exits or
    // simply returns to the calling routine.
    void failuretest(int type, int returnvalue){
    
      // If this is an error in an "optional" SMART command
      if (type==OPTIONAL_CMD){
        if (con->conservative){
          pout("An optional SMART command failed: exiting.  Remove '-T conservative' option to continue.\n");
          EXIT(returnvalue);
        }
        return;
      }
    
      // If this is an error in a "mandatory" SMART command
      if (type==MANDATORY_CMD){
        if (con->permissive--)
          return;
        pout("A mandatory SMART command failed: exiting. To continue, add one or more '-T permissive' options.\n");
        EXIT(returnvalue);
      }
    
      pout("Smartctl internal error in failuretest(type=%d). Please contact developers at " PACKAGE_HOMEPAGE "\n",type);
      EXIT(returnvalue|FAILCMD);
    }
    
    // Used to warn users about invalid checksums.  Action to be taken may be
    // altered by the user.
    void checksumwarning(const char *string){
      // user has asked us to ignore checksum errors
      if (con->checksumignore)
            return;
    
      pout("Warning! %s error: invalid SMART checksum.\n",string);
    
      // user has asked us to fail on checksum errors
      if (con->checksumfail)
        EXIT(FAILSMART);
    
      return;
    }
    
    // Initialize to zero just in case some SMART routines don't work
    struct ata_identify_device drive;
    struct ata_smart_values smartval;
    struct ata_smart_thresholds_pvt smartthres;
    struct ata_smart_errorlog smarterror;
    struct ata_smart_selftestlog smartselftest;
    
    int ataPrintMain (int fd){
      int timewait,code;
      int returnval=0, retid=0, supported=0, needupdate=0;
    
      // Start by getting Drive ID information.  We need this, to know if SMART is supported.
      if ((retid=ataReadHDIdentity(fd,&drive))<0){
        pout("Smartctl: Device Read Identity Failed (not an ATA/ATAPI device)\n\n");
        failuretest(MANDATORY_CMD, returnval|=FAILID);
      }
    
      // If requested, show which presets would be used for this drive and exit.
      if (con->showpresets) {
        showpresets(&drive);
        EXIT(0);
      }
    
      // Use preset vendor attribute options unless user has requested otherwise.
      if (!con->ignorepresets){
        unsigned char *charptr;
        if ((charptr=con->attributedefs))
          applypresets(&drive, &charptr, con);
        else {
          pout("Fatal internal error in ataPrintMain()\n");
          EXIT(returnval|=FAILCMD);
        }
      }
    
      // Print most drive identity information if requested
      if (con->driveinfo){
        pout("=== START OF INFORMATION SECTION ===\n");
        ataPrintDriveInfo(&drive);
      }
    
      // Was this a packet device?
      if (retid>0){
        pout("SMART support is: Unavailable - Packet Interface Devices [this device: %s] don't support ATA SMART\n", packetdevicetype(retid-1));
        failuretest(MANDATORY_CMD, returnval|=FAILSMART);
      }
      
      // if drive does not supports SMART it's time to exit
      supported=ataSmartSupport(&drive);
      if (supported != 1){
        if (supported==0) {
          pout("SMART support is: Unavailable - device lacks SMART capability.\n");
          failuretest(MANDATORY_CMD, returnval|=FAILSMART);
          pout("                  Checking to be sure by trying SMART ENABLE command.\n");
        }
        else {
          pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 82-83 don't show if SMART supported.\n");
          failuretest(MANDATORY_CMD, returnval|=FAILSMART);
          pout("                  Checking for SMART support by trying SMART ENABLE command.\n");
        }
    
        if (ataEnableSmart(fd)){
          pout("                  SMART ENABLE failed - this establishes that this device lacks SMART functionality.\n");
          failuretest(MANDATORY_CMD, returnval|=FAILSMART);
          supported=0;
        }
        else {
          pout("                  SMART ENABLE appeared to work!  Continuing.\n");
          supported=1;
        }
        if (!con->driveinfo) pout("\n");
      }
      
      // Now print remaining drive info: is SMART enabled?    
      if (con->driveinfo){
        int ison=ataIsSmartEnabled(&drive),isenabled=ison;
        
        if (ison==-1) {
          pout("SMART support is: Ambiguous - ATA IDENTIFY DEVICE words 85-87 don't show if SMART is enabled.\n");
          failuretest(MANDATORY_CMD, returnval|=FAILSMART);
          // check SMART support by trying a command
          pout("                  Checking to be sure by trying SMART RETURN STATUS command.\n");
          isenabled=ataDoesSmartWork(fd);
        }
        else
          pout("SMART support is: Available - device has SMART capability.\n");
        
        if (isenabled)
          pout("SMART support is: Enabled\n");
        else {
          if (ison==-1)
            pout("SMART support is: Unavailable\n");
          else
            pout("SMART support is: Disabled\n");
        }
        pout("\n");
      }
      
      // START OF THE ENABLE/DISABLE SECTION OF THE CODE
      if (con->smartenable || con->smartdisable || 
          con->smartautosaveenable || con->smartautosavedisable || 
          con->smartautoofflineenable || con->smartautoofflinedisable)
        pout("=== START OF ENABLE/DISABLE COMMANDS SECTION ===\n");
      
      // Enable/Disable SMART commands
      if (con->smartenable){
        if (ataEnableSmart(fd)) {
          pout("Smartctl: SMART Enable Failed.\n\n");
          failuretest(MANDATORY_CMD, returnval|=FAILSMART);
        }
        else
          pout("SMART Enabled.\n");
      }
      
      // From here on, every command requires that SMART be enabled...
      if (!ataDoesSmartWork(fd)) {
        pout("SMART Disabled. Use option -s with argument 'on' to enable it.\n");
        return returnval;
      }
      
      // Turn off SMART on device
      if (con->smartdisable){    
        if (ataDisableSmart(fd)) {
          pout( "Smartctl: SMART Disable Failed.\n\n");
          failuretest(MANDATORY_CMD,returnval|=FAILSMART);
        }
        pout("SMART Disabled. Use option -s with argument 'on' to enable it.\n");
        return returnval;           
      }
      
      // Let's ALWAYS issue this command to get the SMART status
      code=ataSmartStatus2(fd);
      if (code==-1)
        failuretest(MANDATORY_CMD, returnval|=FAILSMART);
    
      // Enable/Disable Auto-save attributes
      if (con->smartautosaveenable){
        if (ataEnableAutoSave(fd)){
          pout( "Smartctl: SMART Enable Attribute Autosave Failed.\n\n");
          failuretest(MANDATORY_CMD, returnval|=FAILSMART);
        }
        else
          pout("SMART Attribute Autosave Enabled.\n");
      }
      if (con->smartautosavedisable){
        if (ataDisableAutoSave(fd)){
          pout( "Smartctl: SMART Disable Attribute Autosave Failed.\n\n");
          failuretest(MANDATORY_CMD, returnval|=FAILSMART);
        }
        else
          pout("SMART Attribute Autosave Disabled.\n");
      }
      
      // for everything else read values and thresholds are needed
      if (ataReadSmartValues(fd, &smartval)){
        pout("Smartctl: SMART Read Values failed.\n\n");
        failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
      }
      if (ataReadSmartThresholds(fd, &smartthres)){
        pout("Smartctl: SMART Read Thresholds failed.\n\n");
        failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
      }
    
      // Enable/Disable Off-line testing
      if (con->smartautoofflineenable){
        if (!isSupportAutomaticTimer(&smartval)){
          pout("Warning: device does not support SMART Automatic Timers.\n\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        needupdate=1;
        if (ataEnableAutoOffline(fd)){
          pout( "Smartctl: SMART Enable Automatic Offline Failed.\n\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        else
          pout("SMART Automatic Offline Testing Enabled every four hours.\n");
      }
      if (con->smartautoofflinedisable){
        if (!isSupportAutomaticTimer(&smartval)){
          pout("Warning: device does not support SMART Automatic Timers.\n\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        needupdate=1;
        if (ataDisableAutoOffline(fd)){
          pout("Smartctl: SMART Disable Automatic Offline Failed.\n\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        else
          pout("SMART Automatic Offline Testing Disabled.\n");
      }
    
      if (needupdate && ataReadSmartValues(fd, &smartval)){
        pout("Smartctl: SMART Read Values failed.\n\n");
        failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
      }
    
      // all this for a newline!
      if (con->smartenable || con->smartdisable || 
          con->smartautosaveenable || con->smartautosavedisable || 
          con->smartautoofflineenable || con->smartautoofflinedisable)
        pout("\n");
    
      // START OF READ-ONLY OPTIONS APART FROM -V and -i
      if (con->checksmart || con->generalsmartvalues || con->smartvendorattrib || con->smarterrorlog || con->smartselftestlog)
        pout("=== START OF READ SMART DATA SECTION ===\n");
      
      // Check SMART status (use previously returned value)
      if (con->checksmart){
        switch (code) {
    
        case 0:
          // The case where the disk health is OK
          pout("SMART overall-health self-assessment test result: PASSED\n");
          if (ataCheckSmart(&smartval, &smartthres,0)){
            if (con->smartvendorattrib)
              pout("See vendor-specific Attribute list for marginal Attributes.\n\n");
            else {
              PRINT_ON(con);
              pout("Please note the following marginal Attributes:\n");
              PrintSmartAttribWithThres(&smartval, &smartthres,2);
            } 
            returnval|=FAILAGE;
          }
          else
            pout("\n");
          break;
          
        case 1:
          // The case where the disk health is NOT OK
          PRINT_ON(con);
          pout("SMART overall-health self-assessment test result: FAILED!\n"
               "Drive failure expected in less than 24 hours. SAVE ALL DATA.\n");
          PRINT_OFF(con);
          if (ataCheckSmart(&smartval, &smartthres,1)){
            returnval|=FAILATTR;
            if (con->smartvendorattrib)
              pout("See vendor-specific Attribute list for failed Attributes.\n\n");
            else {
              PRINT_ON(con);
              pout("Failed Attributes:\n");
              PrintSmartAttribWithThres(&smartval, &smartthres,1);
            }
          }
          else
            pout("No failed Attributes found.\n\n");   
          returnval|=FAILSTATUS;
          PRINT_OFF(con);
          break;
    
        case -1:
        default:
          // The case where something went wrong with HDIO_DRIVE_TASK ioctl()
          if (ataCheckSmart(&smartval, &smartthres,1)){
            PRINT_ON(con);
            pout("SMART overall-health self-assessment test result: FAILED!\n"
                 "Drive failure expected in less than 24 hours. SAVE ALL DATA.\n");
            PRINT_OFF(con);
            returnval|=FAILATTR;
            returnval|=FAILSTATUS;
            if (con->smartvendorattrib)
              pout("See vendor-specific Attribute list for failed Attributes.\n\n");
            else {
              PRINT_ON(con);
              pout("Failed Attributes:\n");
              PrintSmartAttribWithThres(&smartval, &smartthres,1);
            }
          }
          else {
            pout("SMART overall-health self-assessment test result: PASSED\n");
            if (ataCheckSmart(&smartval, &smartthres,0)){
              if (con->smartvendorattrib)
                pout("See vendor-specific Attribute list for marginal Attributes.\n\n");
              else {
                PRINT_ON(con);
                pout("Please note the following marginal Attributes:\n");
                PrintSmartAttribWithThres(&smartval, &smartthres,2);
              } 
              returnval|=FAILAGE;
            }
            else
              pout("\n");
          } 
          PRINT_OFF(con);
          break;
        } // end of switch statement
        
        PRINT_OFF(con);
      } // end of checking SMART Status
      
      // Print general SMART values
      if (con->generalsmartvalues)
        ataPrintGeneralSmartValues(&smartval, &drive); 
    
      // Print vendor-specific attributes
      if (con->smartvendorattrib){
        PRINT_ON(con);
        PrintSmartAttribWithThres(&smartval, &smartthres,con->printing_switchable?2:0);
        PRINT_OFF(con);
      }
    
      // Print SMART log Directory
      if (con->smartlogdirectory){
        struct ata_smart_log_directory smartlogdirectory;
        if (!isGeneralPurposeLoggingCapable(&drive)){
          pout("Warning: device does not support General Purpose Logging\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        else {
          PRINT_ON(con);
          pout("Log Directory Supported\n");
          if (ataReadLogDirectory(fd, &smartlogdirectory)){
            PRINT_OFF(con);
            pout("Read Log Directory failed.\n\n");
            failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
          }
          else
            ataPrintLogDirectory( &smartlogdirectory);
        }
        PRINT_OFF(con);
      }
      
      // Print SMART error log
      if (con->smarterrorlog){
        if (!isSmartErrorLogCapable(&smartval, &drive)){
          pout("Warning: device does not support Error Logging\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        if (ataReadErrorLog(fd, &smarterror)){
          pout("Smartctl: SMART Error Log Read Failed\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        else {
          // quiet mode is turned on inside ataPrintSmartErrorLog()
          if (ataPrintSmartErrorlog(&smarterror))
    	returnval|=FAILERR;
          PRINT_OFF(con);
        }
      }
      
      // Print SMART self-test log
      if (con->smartselftestlog){
        if (!isSmartTestLogCapable(&smartval, &drive)){
          pout("Warning: device does not support Self Test Logging\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }    
        if(ataReadSelfTestLog(fd, &smartselftest)){
          pout("Smartctl: SMART Self Test Log Read Failed\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        else {
          PRINT_ON(con);
          if (ataPrintSmartSelfTestlog(&smartselftest,!con->printing_switchable))
    	returnval|=FAILLOG;
          PRINT_OFF(con);
          pout("\n");
        }
      }
    
      // Print SMART selective self-test log
      if (con->selectivetestlog){
        struct ata_selective_self_test_log log;
        
        if (!isSupportSelectiveSelfTest(&smartval))
          pout("Device does not support Selective Self Tests/Logging\n");
        else if(ataReadSelectiveSelfTestLog(fd, &log)) {
          pout("Smartctl: SMART Selective Self Test Log Read Failed\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        else {
          PRINT_ON(con);
          ataPrintSelectiveSelfTestLog(&log, &smartval);
          PRINT_OFF(con);
          pout("\n");
        }
      }
    
      // START OF THE TESTING SECTION OF THE CODE.  IF NO TESTING, RETURN
      if (con->testcase==-1)
        return returnval;
      
      pout("=== START OF OFFLINE IMMEDIATE AND SELF-TEST SECTION ===\n");
      // if doing a self-test, be sure it's supported by the hardware
      switch (con->testcase){
      case OFFLINE_FULL_SCAN:
        if (!isSupportExecuteOfflineImmediate(&smartval)){
          pout("Warning: device does not support Execute Offline Immediate function.\n\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        break;
      case ABORT_SELF_TEST:
      case SHORT_SELF_TEST:
      case EXTEND_SELF_TEST:
      case SHORT_CAPTIVE_SELF_TEST:
      case EXTEND_CAPTIVE_SELF_TEST:
        if (!isSupportSelfTest(&smartval)){
          pout("Warning: device does not support Self-Test functions.\n\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        break;
      case CONVEYANCE_SELF_TEST:
      case CONVEYANCE_CAPTIVE_SELF_TEST:
        if (!isSupportConveyanceSelfTest(&smartval)){
          pout("Warning: device does not support Conveyance Self-Test functions.\n\n");
          failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
        }
        break;
      case SELECTIVE_SELF_TEST:
      case SELECTIVE_CAPTIVE_SELF_TEST:
        if (!isSupportSelectiveSelfTest(&smartval)){
          pout("Warning: device does not support Selective Self-Test functions.\n\n");
          failuretest(MANDATORY_CMD, returnval|=FAILSMART);
        }
        break;
      default:
        pout("Internal error in smartctl: con->testcase==%d not recognized\n", (int)con->testcase);
        pout("Please contact smartmontools developers at %s.\n", PACKAGE_BUGREPORT);
        EXIT(returnval|=FAILCMD);
      }
    
      // Now do the test.  Note ataSmartTest prints its own error/success
      // messages
      if (ataSmartTest(fd, con->testcase, &smartval))
        failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
      else {  
        // Tell user how long test will take to complete.  This is tricky
        // because in the case of an Offline Full Scan, the completion
        // timer is volatile, and needs to be read AFTER the command is
        // given. If this will interrupt the Offline Full Scan, we don't
        // do it, just warn user.
        if (con->testcase==OFFLINE_FULL_SCAN){
          if (isSupportOfflineAbort(&smartval))
    	pout("Note: giving further SMART commands will abort Offline testing\n");
          else if (ataReadSmartValues(fd, &smartval)){
    	pout("Smartctl: SMART Read Values failed.\n");
    	failuretest(OPTIONAL_CMD, returnval|=FAILSMART);
          }
        }
        
        // Now say how long the test will take to complete
        if ((timewait=TestTime(&smartval,con->testcase))){ 
          time_t t=time(NULL);
          if (con->testcase==OFFLINE_FULL_SCAN) {
    	t+=timewait;
    	pout("Please wait %d seconds for test to complete.\n", (int)timewait);
          } else {
    	t+=timewait*60;
    	pout("Please wait %d minutes for test to complete.\n", (int)timewait);
          }
          pout("Test will complete after %s\n", ctime(&t));
          
          if (con->testcase!=SHORT_CAPTIVE_SELF_TEST && 
    	  con->testcase!=EXTEND_CAPTIVE_SELF_TEST && 
    	  con->testcase!=CONVEYANCE_CAPTIVE_SELF_TEST && 
    	  con->testcase!=SELECTIVE_CAPTIVE_SELF_TEST)
    	pout("Use smartctl -X to abort test.\n"); 
        }
      }
    
      return returnval;
    }