Skip to content
Snippets Groups Projects
Select Git revision
  • 11cdb81ae00ccac6f1159ae436c3c38a52f29a9f
  • master default protected
2 results

README.md

Blame
  • To learn more about this project, read the wiki.
    RDGW150914_ptemcee.py 11.91 KiB
    #!/usr/bin/env python
    # coding: utf-8
    '''
    This script calculates the RDGW150914 constraints with ptemcee - specifically, the n=1 case both varying or not varying the fundamental frequencies. It produces the chain plot, corner plot, parameter constraints, and data plotted with the 1-sigma band. Since we are working specifically for the n=1 case, we also add in the corner plot the combined chain of alpha_0 and alpha_1, in order to demonstrate that the two are indistinguishable with each other.
    
    --- R^a_{yne} L^i_u, 08/09/2020
    '''
    
    import numpy as np
    import corner
    import matplotlib.pyplot as plt
    from matplotlib.ticker import MaxNLocator
    from matplotlib import rc
    #plt.rcParams['font.family'] = 'DejaVu Sans'
    #rc('text', usetex=True)
    plt.rcParams.update({'font.size': 16.5})
    
    import ptemcee
    from pycbc.pool import choose_pool
    #from multiprocessing import Pool
    import math
    import h5py
    import inspect
    import pandas as pd
    import json
    import qnm
    import random
    from scipy.optimize import minimize
    
    #Remember to change the following global variables
    #rootpath: root path to nr data
    #npoints: number of points you re using for your sampling
    #nmax: tone index --> nmax = 0 if fitting the fundamental tone
    #tshift: time shift after the strain peak
    #vary_fund: whether you vary the fundamental frequency. Works in the model_dv function.
    
    rootpath="/Users/RayneLiu"# "/work/rayne.liu" 
    nmax=1
    tshift=19
    vary_fund = True
    
    #sampler parameters
    npoints=101 
    nwalkers = 42
    ntemps=12
    ndim = int(4*(nmax+1))
    burnin = 10 #How many points do you burn before doing the corner plot. You need to watch the convergence of the chain plot a bit.
                #This is trivial but often forgotten: this cannot be more than npoints! Usually 1/5~1/4 npoints is what I observe.
    
    numbins = 21 #corner plot parameter - how many bins you want
    datacolor = '#105670' #'#4fa3a7'
    pkcolor = '#f2c977' #'#ffb45f'
    mediancolor = '#f7695c' #'#9b2814'
    
    #Import data and necessary functions
    
    #TimeOfMaximum
    def FindTmaximum(y):
        #Determines the maximum absolute value of the complex waveform
        absval = y[:,1]*y[:,1]+y[:,2]*y[:,2]
        vmax=np.max(absval)
        index = np.argmax(absval == vmax)
        timemax=gw_sxs_bbh_0305[index,0]
        return timemax
    
    
    
    
    #This loads the 22 mode data
    gw = {}
    gw["SXS:BBH:0305"] = h5py.File(rootpath+"/git/rdstackingproject/SXS/BBH_SKS_d14.3_q1.22_sA_0_0_0.330_sB_0_0_-0.440/Lev6/rhOverM_Asymptotic_GeometricUnits_CoM.h5", 'r')
    gw_sxs_bbh_0305 = gw["SXS:BBH:0305"]["Extrapolated_N2.dir"]["Y_l2_m2.dat"]
    
    # Remember to download metadata.json from the simulation with number: 0305. Download Lev6/metadata.json
    # This postprocesses the metadata file to find the final mass and final spin
    metadata = {}
    with open(rootpath+"/git/rdstackingproject/SXS/BBH_SKS_d14.3_q1.22_sA_0_0_0.330_sB_0_0_-0.440/Lev6/metadata.json") as file:
        metadata["SXS:BBH:0305"] = json.load(file)
    
    af = metadata["SXS:BBH:0305"]['remnant_dimensionless_spin'][-1]
    mf = metadata["SXS:BBH:0305"]['remnant_mass']
    
    
    
    #times --> x axis of your data
    times = gw_sxs_bbh_0305[:,0]
    tmax=FindTmaximum(gw_sxs_bbh_0305)
    t0=tmax +tshift
    
    #Select the data from t0 onwards
    position = np.argmax(times >= (t0))
    gw_sxs_bbh_0305rd=gw_sxs_bbh_0305[position:-1]
    timesrd=gw_sxs_bbh_0305[position:-1][:,0]
    
    # Depending on nmax, you load nmax number of freqs. and damping times from the qnm package
    omegas = [qnm.modes_cache(s=-2,l=2,m=2,n=i)(a=af)[0] for i in range (0,nmax+1)]
    
    
    
    
    #Fitting
    #RD model for nmax tones. Amplitudes are in (xn*Exp[i yn]) version. Used here.
    def model_dv(theta):
        #x0, y0= theta
        #Your nmax might not align with the dim of theta. Better check it here.
        assert int(len(theta)/4) == nmax + 1, 'Please recheck your n and parameters'
        w = (np.real(omegas))/mf
        tau=-1/(np.imag(omegas))*mf
        dim =int(len(theta)/4)        
        
        avars = theta[ : (nmax+1)]
        bvars = theta[(nmax+1) : 2*(nmax+1)]
        xvars = theta[2*(nmax+1) : 3*(nmax+1)]
        yvars = theta[3*(nmax+1) : ]
        
        if vary_fund == False:
            avars[0]=0
            bvars[0]=0
            
        ansatz = 0
        for i in range (0,dim):
            #bvars[1]=0
            #avars[1]=0
            ansatz += (xvars[i]*np.exp(1j*yvars[i]))*np.exp(-(timesrd-timesrd[0])/(tau[i]*(1+bvars[i]))) * (np.cos((1+avars[i])*w[i]*timesrd)-1j*np.sin((1+avars[i])*w[i]*timesrd))
        # -1j to agree with SXS convention
        return ansatz
    
    
    # Logprior distribution. It defines the allowed range my variables can vary over. 
    #It works for the (xn*Exp[iyn]) version. 
    def log_prior(theta): 
        #Warning: we are specifically working with nmax=1 so here individual prior to the parameters are manually adjusted. This does not apply to all other nmax's.
        a_0 = theta[0]
        a_1 = theta[1]
        b_0 = theta[2]
        b_1 = theta[3]
        x_0 = theta[4]
        x_1 = theta[5]
        y_0 = theta[6]
        y_1 = theta[7]
    
        if all([nmax == 1, 0 <= tshift <= 5, vary_fund == True, 0 <= x_0 <= 2.0, 0 <= y_0 <= 2*np.pi, -0.4 <= a_0 <= 0.4, -1.0 <= b_0 <= 1.6, 0 <= x_1 <= 1.8, 0 <= y_1 <= 2*np.pi, -1.0 <= a_1 <= 1.6, -1.0 <= b_1 <= 2.0]):        
            return 0.0
        elif all([nmax == 1, tshift == 19, vary_fund == True, 0 <= x_0 <= 1.5, 0 <= y_0 <= 2*np.pi, -1.0 <= a_0 <= 3.0, -1.0 <= b_0 <= 2.0, 0 <= x_1 <= 1.8, 0 <= y_1 <= 2*np.pi, -1.0 <= a_1 <= 3.0, -1.0 <= b_1 <= 2.0]):
            return 0.0
        
    #PAY EXTRA ATTENTION TO THESE TWO CASES, SINCE WE SHIFTED y_0. THE CORNER PLOTS LABELS NEED TO BE TREATED WITH CARE.
        elif all([nmax == 1, 0 <= tshift <= 5, vary_fund == False, 0 <= x_0 <= 2.0, 0 <= y_0-np.pi <= 2*np.pi, -1.0 <= a_0 <= 1.0, -1.0 <= b_0 <= 1.0, 0 <= x_1 <= 1.6, 0 <= y_1 <= 2*np.pi, -1.0 <= a_1 <= 1.2, -1.0 <= b_1 <= 2.8]):
            return 0.0
        elif all([nmax == 1, tshift == 19, vary_fund == False, 0 <= x_0 <= 0.6, 0 <= y_0-np.pi <= 2*np.pi, -1.0 <= a_0 <= 1.0, -1.0 <= b_0 <= 1.0, 0 <= x_1 <= 1.2, 0 <= y_1 <= 2*np.pi, -1.0 <= a_1 <= 3.0, -1.0 <= b_1 <= 2.0]):
            return 0.0
    
        return -np.inf
    
    
    # LogLikelihood function. It is just a Gaussian loglikelihood based on computing the residuals^2
    def log_likelihood(theta):
        modelev = model_dv(theta)
        return  -np.sum((gw_sxs_bbh_0305rd[:,1] - (modelev.real))**2+(gw_sxs_bbh_0305rd[:,2] - (modelev.imag))**2)
    
    
    # Logposterior distribution for the residuals case.
    # The evidence is just a normalization factor
    def log_probability(theta):
        lp = log_prior(theta)
        #print('lp:')
        #print(lp)
        if not np.isfinite(lp):
            return -np.inf
        return lp + log_likelihood(theta)
    
    
    
    
    #Fit with ptemcee
    #Set the number of cores of your processors
    pool = choose_pool(4)
    pool.size = 4
    vary_param = float(vary_fund)
    pos = np.array([[random.uniform(-0.1,0.1), random.uniform(-0.1,0.1), 4.28313743e-01, random.uniform(2.5, 2.6) + (1-vary_param) * np.pi]])
    for i in range (1,nmax+1):
        pos_aux = np.array([[random.uniform(-0.1,0.1), random.uniform(-0.1,0.1), random.uniform(0.3,0.4), random.uniform(2.01, 2.02) + (1-vary_param) * np.pi]])
        pos = np.concatenate((pos, pos_aux), axis = 0)
        
    pos = pos.T.flatten()
    pos = list(pos)
    pos += 1e-5 * np.random.randn(ntemps, nwalkers, ndim)
    #print(pos)
    
    sampler = ptemcee.Sampler(nwalkers, ndim, log_likelihood, log_prior, ntemps=ntemps, pool=pool)
    sampler.run_mcmc(pos,npoints)
    
    
    
    
    #Define labels and start plotting
    paramlabels_a = [r'$\alpha_'+str(i)+'$' for i in range (nmax+1)]
    paramlabels_b = [r'$\beta_'+str(i)+'$' for i in range (nmax+1)]
    paramlabels_x = [r'$x_'+str(i)+'$' for i in range (nmax+1)]
    paramlabels_y = [r'$y_'+str(i)+'$' for i in range (nmax+1)] if vary_fund == True else ['$y_'+str(i)+'-\pi$' for i in range (nmax+1)]
    paramlabels = paramlabels_a + paramlabels_b + paramlabels_x + paramlabels_y
    #Need to delete alpha_0 and alpha_1 for the corner plot
    paramlabels_corner = paramlabels_a + paramlabels_b + paramlabels_x + paramlabels_y
    if vary_fund == False:
        del paramlabels_corner[0]
        del paramlabels_corner[1]
    
    
    
    #Chain plot
    fig, axes = plt.subplots(4*(nmax+1), 1, sharex=True, figsize=(12, 9*(nmax+1)))
    for i in range(4*(nmax+1)):
        axes[i].plot(sampler.chain[0,:, :, i].T, color="k", alpha=0.4)
        axes[i].yaxis.set_major_locator(MaxNLocator(5))
        axes[i].set_ylabel(paramlabels[i])
    axes[-1].set_xlabel('Iterations')
    #plt.show()
    fig.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_chain.pdf', format = 'pdf')
    
    
    
    #Burn samples, calculate peak likelihood value (not necessarily so in atlas) and make corner plot
    samples = sampler.chain[0,:, burnin:, :].reshape((-1, ndim))
    #samples for corner plot
    samples_corn = samples if vary_fund == True else np.delete(samples, np.s_[0,2], 1)
    #print('Values with peak likelihood:')
    lglk = np.array([log_likelihood(samples[i]) for i in range(len(samples))])
    pk = samples[np.argmax(lglk)]
    #print('pk:')
    #print(pk)
    pk_corn = pk if vary_fund == True else np.delete(pk, [0,2])
    #print('pkFalse:')
    #print(pk)
        
    #print(pk) 
    #Now calculate median (50-percentile) value
    median = np.median(samples_corn, axis=0)
    #print(samples)
    #print(samples_corn)
    
    figcorn = corner.corner(samples_corn, bins = numbins, hist_bin_factor = 5, color = datacolor, truths=pk_corn, truth_color = pkcolor, plot_contours = True, labels = paramlabels_corner, quantiles=(0.05, 0.16, 0.5, 0.84, 0.95), levels=[1-np.exp(-0.5), 1-np.exp(-1.64 ** 2/2)], show_titles=True)
    
    #Extract the axes in order to add more important line plots
    naxes = len(pk_corn)
    axes = np.array(figcorn.axes).reshape((naxes, naxes))
    
    # Loop over the diagonal
    for i in range(naxes):
        ax = axes[i, i]
        ax.axvline(median[i], color=mediancolor)
    
    # Loop over the histograms
    for yi in range(naxes):
        for xi in range(yi):
            ax = axes[yi, xi]
            ax.axvline(median[xi], color=mediancolor)
            ax.axhline(median[yi], color=mediancolor)
            ax.plot(median[xi], median[yi], color = mediancolor, marker = 's')
    figcorn.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_corner.pdf', format = 'pdf')
    
    
    
    #Now plot alpha_0 on top of alpha_1 - only on top, not stacked, and only valid for vary_fund == True
    if vary_fund == True:
        samplea0 = samples.T[0]
        samplea1 = samples.T[1]
        fighist1 = plt.figure(figsize = (8, 6))
        n0, bins0, patches0 = plt.hist(samplea0, bins = numbins * 6, alpha = 0.5, label = r'$\alpha_0$')
        n1, bins1, patches1 = plt.hist(samplea1, bins = numbins * 10, alpha = 0.5, label = r'$\alpha_1$')
        #n01, bins01, patches01 = plt.hist([samplea0, samplea1], numbins * 10, rwidth = 3, alpha = 0.5, label = [r'$\alpha_0$', r'$\alpha_1$'])
        plt.legend()
        fighist1.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_histtop.pdf', format = 'pdf')
    
        #This plot is stacked
        fighist1 = plt.figure(figsize = (8, 6))
        sn01, sbins01, spatches01 = plt.hist([samplea0, samplea1], numbins * 10, rwidth = 1, stacked = True, alpha = 0.5, label = [r'$\alpha_0$', r'$\alpha_1$'])
        plt.legend()
        fighist1.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_histstack.pdf', format = 'pdf')
    
    
        
    #Now plot the NR data against the mcmc fit data, together with the 1-sigma varying error data
    onesig_bounds = np.array([np.percentile(samples[:, i], [16, 84]) for i in range(len(samples[0]))]).T
    modelfitpk = model_dv(pk)
    figband = plt.figure(figsize = (12, 9))
    #Plot the 1-sigma_percentile
    for j in range(len(samples)):
        sample = samples[j]
        if np.all(onesig_bounds[0] <= sample) and np.all(sample <= onesig_bounds[1]):
            plt.plot(timesrd, model_dv(sample).real, "#79CAF2", alpha=0.3)
        
    plt.plot(timesrd, gw_sxs_bbh_0305rd[:,1], "k", alpha=0.7, lw=2, label=r'NR_re')
    plt.plot(timesrd, modelfitpk.real, "r", alpha=0.7, lw=2, label=r'FitMCmax_re')
    plt.title(r'Comparison of the MC fit data and the $1-\sigma$ error band')
    plt.legend()
    plt.xlim(timesrd[0], timesrd[0]+80)
    plt.xlabel("t")
    plt.ylabel("h")
    
    figband.savefig(rootpath+'/git/rdstackingproject/plotsmc/vary'+str(vary_fund)+'nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'pt_band.pdf', format = 'pdf')