Skip to content
Snippets Groups Projects
Commit ae6a0d9d authored by frcojimenez's avatar frcojimenez
Browse files

updates

parent 9aa1e24e
Branches
No related tags found
No related merge requests found
Source diff could not be displayed: it is too large. Options to address this: view the blob.
#!/usr/bin/env python
# coding: utf-8
# In[2]:
#Import relevant modules, import data and all that #Import relevant modules, import data and all that
import numpy as np import numpy as np
from scipy import interpolate from scipy import interpolate
...@@ -48,10 +42,6 @@ except SystemExit: ...@@ -48,10 +42,6 @@ except SystemExit:
parser.sections() parser.sections()
pass pass
# In[3]:
# path # path
rootpath=parser.get('nr-paths','rootpath') rootpath=parser.get('nr-paths','rootpath')
...@@ -65,18 +55,10 @@ output_folder = parser.get('output-folder','output-folder') ...@@ -65,18 +55,10 @@ output_folder = parser.get('output-folder','output-folder')
overwrite = parser.get('setup','overwrite') overwrite = parser.get('setup','overwrite')
downfactor = np.int(parser.get('setup','plot_down_factor')) downfactor = np.int(parser.get('setup','plot_down_factor'))
# In[4]:
if not os.path.exists(output_folder): if not os.path.exists(output_folder):
os.mkdir(output_folder) os.mkdir(output_folder)
print("Directory " , output_folder , " Created ") print("Directory " , output_folder , " Created ")
# In[5]:
# time config # time config
tshift=parser.get('time-setup','tshift') tshift=parser.get('time-setup','tshift')
...@@ -88,10 +70,6 @@ tend = np.float(tend) ...@@ -88,10 +70,6 @@ tend = np.float(tend)
t_align=parser.get('time-setup','t_align') t_align=parser.get('time-setup','t_align')
t_align = np.float(t_align) t_align = np.float(t_align)
# In[6]:
# n-tones & nlive # n-tones & nlive
nmax=parser.get('n-tones','nmax') nmax=parser.get('n-tones','nmax')
...@@ -100,10 +78,6 @@ nmax = np.int(nmax) ...@@ -100,10 +78,6 @@ nmax = np.int(nmax)
npoints=parser.get('n-live-points','npoints') npoints=parser.get('n-live-points','npoints')
npoints = np.int(npoints) npoints = np.int(npoints)
# In[7]:
# model # model
model=parser.get('rd-model','model') model=parser.get('rd-model','model')
error_str = eval(parser.get('rd-model','error_str')) error_str = eval(parser.get('rd-model','error_str'))
...@@ -119,18 +93,17 @@ print('nmax:',nmax) ...@@ -119,18 +93,17 @@ print('nmax:',nmax)
print('tshift:',tshift) print('tshift:',tshift)
print('error:', error_str) print('error:', error_str)
# In[8]:
output_folder_1=output_folder+'/'+model+'-nmax'+str(nmax) output_folder_1=output_folder+'/'+model+'-nmax'+str(nmax)
if not os.path.exists(output_folder_1): if not os.path.exists(output_folder_1):
os.mkdir(output_folder_1) os.mkdir(output_folder_1)
print("Directory " , output_folder_1 , " Created ") print("Directory " , output_folder_1 , " Created ")
corner_plot=output_folder_1+'/Dynesty_'+str(simulation_number)+'_'+model+'_nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'corner_plot.png'
diagnosis_plot=output_folder_1+'/Dynesty_diagnosis'+str(simulation_number)+'_'+model+'_nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'.png'
fit_plot=output_folder_1+'/Fit_results_'+str(simulation_number)+'tshift_'+str(tshift)+'_'+model+'_nmax_'+str(nmax)+'.png'
# In[9]: sumary_data = output_folder_1+'/summary'+str(simulation_number)+'_'+model+'_nmax_'+str(nmax)+'.csv'
best_data=output_folder_1+'/best_values_'+str(simulation_number)+'_'+model+'_nmax_'+str(nmax)+'.csv'
# loading priors # loading priors
w_mins=np.empty(nmax+1) w_mins=np.empty(nmax+1)
...@@ -177,10 +150,6 @@ if model == 'w-tau-fixed': ...@@ -177,10 +150,6 @@ if model == 'w-tau-fixed':
priors_max = np.concatenate((a_maxs,ph_maxs)) priors_max = np.concatenate((a_maxs,ph_maxs))
prior_dim = len(priors_min) prior_dim = len(priors_min)
# In[10]:
vary_fund = True vary_fund = True
#sampler parameters #sampler parameters
...@@ -225,10 +194,6 @@ def tauRD_to_t_Phys(tau,M): ...@@ -225,10 +194,6 @@ def tauRD_to_t_Phys(tau,M):
c=2.99792458*10**8;G=6.67259*10**(-11);MS=1.9885*10**30; c=2.99792458*10**8;G=6.67259*10**(-11);MS=1.9885*10**30;
return ((M*MS*G)/c**3)*tau return ((M*MS*G)/c**3)*tau
# In[11]:
#This loads the 22 mode data #This loads the 22 mode data
gw = {} gw = {}
gw[simulation_number] = h5py.File(simulation_path_1, 'r') gw[simulation_number] = h5py.File(simulation_path_1, 'r')
...@@ -257,10 +222,6 @@ times5 = gw5_sxs_bbh_0305[:,0] ...@@ -257,10 +222,6 @@ times5 = gw5_sxs_bbh_0305[:,0]
tmax5=FindTmaximum(gw5_sxs_bbh_0305) tmax5=FindTmaximum(gw5_sxs_bbh_0305)
times5 = times5 - tmax5 times5 = times5 - tmax5
# In[12]:
#Select the data from 0 onwards #Select the data from 0 onwards
position = np.argmax(times >= (t_align)) position = np.argmax(times >= (t_align))
position5 = np.argmax(times5 >= (t_align)) position5 = np.argmax(times5 >= (t_align))
...@@ -269,10 +230,6 @@ gw_sxs_bbh_0305rd5=gw5_sxs_bbh_0305[position5+1:-1] ...@@ -269,10 +230,6 @@ gw_sxs_bbh_0305rd5=gw5_sxs_bbh_0305[position5+1:-1]
timesrd=gw_sxs_bbh_0305[position:-1][:,0][:-1]-tmax timesrd=gw_sxs_bbh_0305[position:-1][:,0][:-1]-tmax
timesrd5=gw5_sxs_bbh_0305[position5:-1][:,0][:-1]-tmax5 timesrd5=gw5_sxs_bbh_0305[position5:-1][:,0][:-1]-tmax5
# In[13]:
#Test plot real part (data was picked in the last cell). Aligning in time #Test plot real part (data was picked in the last cell). Aligning in time
plt.figure(figsize = (12, 8)) plt.figure(figsize = (12, 8))
plt.plot(timesrd, gw_sxs_bbh_0305rd[:,1], "r", alpha=0.3, lw=3, label=r'$Lev6$: real') plt.plot(timesrd, gw_sxs_bbh_0305rd[:,1], "r", alpha=0.3, lw=3, label=r'$Lev6$: real')
...@@ -281,10 +238,6 @@ plt.plot(timesrd5, gw_sxs_bbh_0305rd5[:,1], "b", alpha=0.3, lw=3, label=r'$Lev5: ...@@ -281,10 +238,6 @@ plt.plot(timesrd5, gw_sxs_bbh_0305rd5[:,1], "b", alpha=0.3, lw=3, label=r'$Lev5:
plt.plot(timesrd5, np.sqrt(gw_sxs_bbh_0305rd5[:,1]**2+gw_sxs_bbh_0305rd5[:,2]**2), "b", alpha=0.3, lw=3, label=r'$Lev5\,amp$') plt.plot(timesrd5, np.sqrt(gw_sxs_bbh_0305rd5[:,1]**2+gw_sxs_bbh_0305rd5[:,2]**2), "b", alpha=0.3, lw=3, label=r'$Lev5\,amp$')
plt.legend() plt.legend()
# In[14]:
#Test plot im part (data was picked in the last cell). Aligning in time #Test plot im part (data was picked in the last cell). Aligning in time
plt.figure(figsize = (12, 8)) plt.figure(figsize = (12, 8))
plt.plot(timesrd, gw_sxs_bbh_0305rd[:,2], "r", alpha=0.3, lw=3, label=r'$Lev6: imag$') plt.plot(timesrd, gw_sxs_bbh_0305rd[:,2], "r", alpha=0.3, lw=3, label=r'$Lev6: imag$')
...@@ -293,29 +246,17 @@ plt.plot(timesrd5, gw_sxs_bbh_0305rd5[:,2], "b", alpha=0.3, lw=3, label=r'$Lev5: ...@@ -293,29 +246,17 @@ plt.plot(timesrd5, gw_sxs_bbh_0305rd5[:,2], "b", alpha=0.3, lw=3, label=r'$Lev5:
plt.plot(timesrd5, np.sqrt(gw_sxs_bbh_0305rd5[:,1]**2+gw_sxs_bbh_0305rd5[:,2]**2), "b", alpha=0.3, lw=3, label=r'$Lev5\,amp$') plt.plot(timesrd5, np.sqrt(gw_sxs_bbh_0305rd5[:,1]**2+gw_sxs_bbh_0305rd5[:,2]**2), "b", alpha=0.3, lw=3, label=r'$Lev5\,amp$')
plt.legend() plt.legend()
# In[15]:
# Depending on nmax, you load nmax number of freqs. and damping times from the qnm package # Depending on nmax, you load nmax number of freqs. and damping times from the qnm package
omegas = [qnm.modes_cache(s=-2,l=2,m=2,n=i)(a=af)[0] for i in range (0,dim)] omegas = [qnm.modes_cache(s=-2,l=2,m=2,n=i)(a=af)[0] for i in range (0,dim)]
w = (np.real(omegas))/mf w = (np.real(omegas))/mf
tau=-1/(np.imag(omegas))*mf tau=-1/(np.imag(omegas))*mf
# In[16]:
gwnew_re = interpolate.interp1d(timesrd, gw_sxs_bbh_0305rd[:,1], kind = 'cubic') gwnew_re = interpolate.interp1d(timesrd, gw_sxs_bbh_0305rd[:,1], kind = 'cubic')
gwnew_im = interpolate.interp1d(timesrd, gw_sxs_bbh_0305rd[:,2], kind = 'cubic') gwnew_im = interpolate.interp1d(timesrd, gw_sxs_bbh_0305rd[:,2], kind = 'cubic')
gwnew_re5 = interpolate.interp1d(timesrd5, gw_sxs_bbh_0305rd5[:,1], kind = 'cubic') gwnew_re5 = interpolate.interp1d(timesrd5, gw_sxs_bbh_0305rd5[:,1], kind = 'cubic')
gwnew_im5 = interpolate.interp1d(timesrd5, gw_sxs_bbh_0305rd5[:,2], kind = 'cubic') gwnew_im5 = interpolate.interp1d(timesrd5, gw_sxs_bbh_0305rd5[:,2], kind = 'cubic')
# In[17]:
if timesrd5[-1]>= timesrd[-1]: if timesrd5[-1]>= timesrd[-1]:
timesrd_final = timesrd timesrd_final = timesrd
else: else:
...@@ -329,18 +270,10 @@ gwdatanew_im5 = gwnew_im5(timesrd_final) ...@@ -329,18 +270,10 @@ gwdatanew_im5 = gwnew_im5(timesrd_final)
gwdatanew = gwdatanew_re - 1j*gwdatanew_im gwdatanew = gwdatanew_re - 1j*gwdatanew_im
gwdatanew5 = gwdatanew_re5- 1j*gwdatanew_im5 gwdatanew5 = gwdatanew_re5- 1j*gwdatanew_im5
# In[18]:
mismatch=1-EasyMatchT(timesrd_final,gwdatanew,gwdatanew5,0,0+90) mismatch=1-EasyMatchT(timesrd_final,gwdatanew,gwdatanew5,0,0+90)
error=np.sqrt(2*mismatch) error=np.sqrt(2*mismatch)
print(mismatch) print(mismatch)
# In[19]:
# Phase alignement # Phase alignement
phas = np.angle(gwdatanew) phas = np.angle(gwdatanew)
phas = np.unwrap(phas) phas = np.unwrap(phas)
...@@ -349,10 +282,6 @@ phas5 = np.unwrap(phas5) ...@@ -349,10 +282,6 @@ phas5 = np.unwrap(phas5)
plt.plot(timesrd_final, phas, "r", alpha=0.3, lw=3, label=r'$phase$') plt.plot(timesrd_final, phas, "r", alpha=0.3, lw=3, label=r'$phase$')
plt.plot(timesrd_final, phas5, "blue", alpha=0.3, lw=3, label=r'$phase$') plt.plot(timesrd_final, phas5, "blue", alpha=0.3, lw=3, label=r'$phase$')
# In[20]:
position = np.argmax(timesrd_final >= (t_align)) position = np.argmax(timesrd_final >= (t_align))
dphase = phas5[position]-phas[position] dphase = phas5[position]-phas[position]
print(dphase) print(dphase)
...@@ -368,10 +297,6 @@ phas5 = np.unwrap(phas5) ...@@ -368,10 +297,6 @@ phas5 = np.unwrap(phas5)
plt.plot(timesrd_final, phas, "r", alpha=0.3, lw=3, label=r'$phase$') plt.plot(timesrd_final, phas, "r", alpha=0.3, lw=3, label=r'$phase$')
plt.plot(timesrd_final, phas5, "blue", alpha=0.3, lw=3, label=r'$phase$') plt.plot(timesrd_final, phas5, "blue", alpha=0.3, lw=3, label=r'$phase$')
# In[21]:
mismatch=1-EasyMatchT(timesrd_final,gwdatanew,gwdatanew5,0,+90) mismatch=1-EasyMatchT(timesrd_final,gwdatanew,gwdatanew5,0,+90)
print(mismatch) print(mismatch)
if error_str: if error_str:
...@@ -379,10 +304,6 @@ if error_str: ...@@ -379,10 +304,6 @@ if error_str:
else : else :
error = 1 error = 1
# In[22]:
#Test the new interpolated data #Test the new interpolated data
plt.figure(figsize = (12, 8)) plt.figure(figsize = (12, 8))
plt.plot(timesrd_final, gwdatanew.real, "r", alpha=0.3, lw=2, label='Lev6') plt.plot(timesrd_final, gwdatanew.real, "r", alpha=0.3, lw=2, label='Lev6')
...@@ -390,10 +311,6 @@ plt.plot(timesrd_final, gwdatanew5.real, "b", alpha=0.3, lw=2, label='Lev5') ...@@ -390,10 +311,6 @@ plt.plot(timesrd_final, gwdatanew5.real, "b", alpha=0.3, lw=2, label='Lev5')
plt.plot(timesrd_final, error.real, "b", alpha=0.3, lw=2, label='error') plt.plot(timesrd_final, error.real, "b", alpha=0.3, lw=2, label='error')
plt.legend() plt.legend()
# In[23]:
#Test the error data #Test the error data
plt.figure(figsize = (12, 8)) plt.figure(figsize = (12, 8))
plt.plot(timesrd_final, error.real, "b", alpha=0.3, lw=2, label='error real') plt.plot(timesrd_final, error.real, "b", alpha=0.3, lw=2, label='error real')
...@@ -401,10 +318,6 @@ plt.plot(timesrd_final, error.imag, "r", alpha=0.3, lw=2, label='error imag') ...@@ -401,10 +318,6 @@ plt.plot(timesrd_final, error.imag, "r", alpha=0.3, lw=2, label='error imag')
plt.plot(timesrd_final, np.sqrt(error.imag**2+error.real**2), "r", alpha=0.3, lw=2, label='all error') plt.plot(timesrd_final, np.sqrt(error.imag**2+error.real**2), "r", alpha=0.3, lw=2, label='all error')
plt.legend() plt.legend()
# In[24]:
#Take the piece of waveform you want #Take the piece of waveform you want
position_in = np.argmax(timesrd_final >= tshift) position_in = np.argmax(timesrd_final >= tshift)
position_end = np.argmax(timesrd_final >= tend) position_end = np.argmax(timesrd_final >= tend)
...@@ -413,10 +326,6 @@ gwdatanew_re_tsh = gwdatanew_re[position_in:position_end] ...@@ -413,10 +326,6 @@ gwdatanew_re_tsh = gwdatanew_re[position_in:position_end]
gwdatanew_im_tsh = gwdatanew_im[position_in:position_end] gwdatanew_im_tsh = gwdatanew_im[position_in:position_end]
error_tsh=error[position_in:position_end] error_tsh=error[position_in:position_end]
# In[25]:
#Fitting #Fitting
#RD model for nmax tones. Amplitudes are in (xn*Exp[i yn]) version. Used here. #RD model for nmax tones. Amplitudes are in (xn*Exp[i yn]) version. Used here.
def model_dv_q(theta): def model_dv_q(theta):
...@@ -488,16 +397,8 @@ def log_probability(theta): ...@@ -488,16 +397,8 @@ def log_probability(theta):
return -np.inf return -np.inf
return lp + log_likelihood(theta) return lp + log_likelihood(theta)
# In[26]:
dict = {'w-tau': model_dv_tau , 'w-q': model_dv_q, 'w-tau-fixed': model_dv} dict = {'w-tau': model_dv_tau , 'w-q': model_dv_q, 'w-tau-fixed': model_dv}
# In[27]:
#I need to provid an initial guess for 4*(nmax+1) the parameters #I need to provid an initial guess for 4*(nmax+1) the parameters
np.random.seed(42) np.random.seed(42)
nll = lambda *args: -log_likelihood(*args) nll = lambda *args: -log_likelihood(*args)
...@@ -508,17 +409,9 @@ print("Maximum likelihood estimates:") ...@@ -508,17 +409,9 @@ print("Maximum likelihood estimates:")
vars_ml=soln.x vars_ml=soln.x
print(vars_ml) print(vars_ml)
# In[28]:
f2=dynesty.NestedSampler(log_likelihood, prior_transform, prior_dim, nlive=npoints,sample='rwalk') f2=dynesty.NestedSampler(log_likelihood, prior_transform, prior_dim, nlive=npoints,sample='rwalk')
f2.run_nested() f2.run_nested()
# In[29]:
wstr = r'$\omega_' wstr = r'$\omega_'
if model == 'w-tau': if model == 'w-tau':
...@@ -547,10 +440,6 @@ labels = np.concatenate((w_lab,tau_lab,amp_lab,pha_lab)) ...@@ -547,10 +440,6 @@ labels = np.concatenate((w_lab,tau_lab,amp_lab,pha_lab))
if model=='w-tau-fixed': if model=='w-tau-fixed':
labels = np.concatenate((amp_lab,pha_lab)) labels = np.concatenate((amp_lab,pha_lab))
# In[30]:
if model=='w-tau-fixed': if model=='w-tau-fixed':
rg = (nmax+1) rg = (nmax+1)
else: else:
...@@ -570,56 +459,31 @@ else: ...@@ -570,56 +459,31 @@ else:
amps_aux = samps_tr[i][half_points:-1] amps_aux = samps_tr[i][half_points:-1]
npamps[i] = np.quantile(amps_aux, 0.5) npamps[i] = np.quantile(amps_aux, 0.5)
# In[31]:
res = f2.results res = f2.results
res.samples_u.shape res.samples_u.shape
res.summary() res.summary()
samps=f2.results.samples samps=f2.results.samples
# In[32]:
evidence = res.logz[-1] evidence = res.logz[-1]
evidence_error = res.logzerr[-1] evidence_error = res.logzerr[-1]
# In[33]:
summary_titles=['n','id','t_shift','dlogz','dlogz_err'] summary_titles=['n','id','t_shift','dlogz','dlogz_err']
f = output_folder_1+'/summary'+str(simulation_number)+'_'+model+'_nmax_'+str(nmax)+'.csv'
# In[35]:
if os.path.exists(f): if os.path.exists(sumary_data):
outvalues = np.array([[nmax, simulation_number, tshift, evidence,evidence_error]]) outvalues = np.array([[nmax, simulation_number, tshift, evidence,evidence_error]])
else: else:
outvalues = np.array([summary_titles,[nmax, simulation_number, tshift, evidence,evidence_error]]) outvalues = np.array([summary_titles,[nmax, simulation_number, tshift, evidence,evidence_error]])
with open(f, 'a') as file: with open(sumary_data, 'a') as file:
writer = csv.writer(file) writer = csv.writer(file)
if (outvalues.shape)[0]>1 : if (outvalues.shape)[0]>1 :
writer.writerows(outvalues) writer.writerows(outvalues)
else: else:
writer.writerow(outvalues[0]) writer.writerow(outvalues[0])
# In[36]:
samps=f2.results.samples samps=f2.results.samples
samps_tr=np.transpose(samps) samps_tr=np.transpose(samps)
# In[37]:
sigma_vars_m = np.empty(prior_dim) sigma_vars_m = np.empty(prior_dim)
sigma_vars_p = np.empty(prior_dim) sigma_vars_p = np.empty(prior_dim)
sigma_vars = np.empty(prior_dim) sigma_vars = np.empty(prior_dim)
...@@ -629,29 +493,16 @@ for i in range(prior_dim): ...@@ -629,29 +493,16 @@ for i in range(prior_dim):
sigma_vars[i] = np.quantile(amps_aux, 0.5) sigma_vars[i] = np.quantile(amps_aux, 0.5)
sigma_vars_p[i] = np.quantile(amps_aux, 0.9) sigma_vars_p[i] = np.quantile(amps_aux, 0.9)
# In[38]:
sigma_vars_all = [sigma_vars,sigma_vars_m,sigma_vars_p] sigma_vars_all = [sigma_vars,sigma_vars_m,sigma_vars_p]
sigma_vars_all=np.stack([sigma_vars,sigma_vars_m,sigma_vars_p], axis=0) sigma_vars_all=np.stack([sigma_vars,sigma_vars_m,sigma_vars_p], axis=0)
# In[69]:
key =['max val','lower bound','higher bound'] key =['max val','lower bound','higher bound']
file=output_folder_1+'/best_values_'+str(simulation_number)+'_'+model+'_nmax_'+str(nmax)+'.csv'
dfslist = [pd.DataFrame(np.concatenate(([tshift],sigma_vars_all[1])).reshape((-1,prior_dim+1)), columns=np.concatenate((['tshift'],labels)), index = [key[i]]) for i in range(3)] dfslist = [pd.DataFrame(np.concatenate(([tshift],sigma_vars_all[1])).reshape((-1,prior_dim+1)), columns=np.concatenate((['tshift'],labels)), index = [key[i]]) for i in range(3)]
df2 = pd.concat(dfslist) df2 = pd.concat(dfslist)
if os.path.exists(file): if os.path.exists(best_data):
df2.to_csv(file, mode='a', header=False,index = True) df2.to_csv(best_data, mode='a', header=False,index = True)
else: else:
df2.to_csv(file,index = True) df2.to_csv(best_data,index = True)
# In[42]:
if model == 'w-q': if model == 'w-q':
tau_val = np.pi*w*tau tau_val = np.pi*w*tau
...@@ -662,10 +513,6 @@ elif model == 'w-tau': ...@@ -662,10 +513,6 @@ elif model == 'w-tau':
elif model == 'w-tau-fixed': elif model == 'w-tau-fixed':
truths = npamps truths = npamps
# In[43]:
fg, ax = dyplot.cornerplot(res, color='blue', fg, ax = dyplot.cornerplot(res, color='blue',
show_titles=True, show_titles=True,
labels=labels, labels=labels,
...@@ -674,15 +521,15 @@ fg, ax = dyplot.cornerplot(res, color='blue', ...@@ -674,15 +521,15 @@ fg, ax = dyplot.cornerplot(res, color='blue',
truth_color='red', truth_color='red',
) )
fg.savefig(corner_plot, format = 'png', bbox_inches = 'tight')
# In[127]: from dynesty import plotting as dyplot
fg.savefig(output_folder_1+'/Dynesty_'+str(simulation_number)+'_'+model+'_nmax='+str(nmax)+'_tshift='+str(tshift)+'_'+str(npoints)+'_chainplot.png', format = 'png', bbox_inches = 'tight')
# In[148]: lnz_truth = ndim * -np.log(2 * 10.) # analytic evidence solution
fig, axes = dyplot.runplot(res, lnz_truth=lnz_truth)
fig.tight_layout()
fig.savefig(diagnosis_plot, format = 'png', dpi = 384, bbox_inches = 'tight')
figband = plt.figure(figsize = (12, 9)) figband = plt.figure(figsize = (12, 9))
plt.plot(timesrd_final_tsh,gwdatanew_re_tsh, "green", alpha=0.9, lw=3, label=r'$res_{240}$') plt.plot(timesrd_final_tsh,gwdatanew_re_tsh, "green", alpha=0.9, lw=3, label=r'$res_{240}$')
...@@ -698,10 +545,6 @@ plt.xlabel('t') ...@@ -698,10 +545,6 @@ plt.xlabel('t')
plt.ylabel('h') plt.ylabel('h')
plt.show() plt.show()
# In[149]:
fit_plot=output_folder_1+'/Fit_results_'+str(simulation_number)+'tshift_'+str(tshift)+'_'+model+'_nmax_'+str(nmax)+'.png'
figband.savefig(fit_plot) figband.savefig(fit_plot)
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment