Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RDStackingProject
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yifan Wang
RDStackingProject
Commits
ae6a0d9d
Commit
ae6a0d9d
authored
Nov 20, 2020
by
frcojimenez
Browse files
Options
Downloads
Patches
Plain Diff
updates
parent
9aa1e24e
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
code_new/NR_dynesty_t0_loop.ipynb
+153
-89
153 additions, 89 deletions
code_new/NR_dynesty_t0_loop.ipynb
code_new/NR_dynesty_t0_loop.py
+17
-174
17 additions, 174 deletions
code_new/NR_dynesty_t0_loop.py
with
170 additions
and
263 deletions
code_new/NR_dynesty_t0_loop.ipynb
+
153
−
89
View file @
ae6a0d9d
Source diff could not be displayed: it is too large. Options to address this:
view the blob
.
This diff is collapsed.
Click to expand it.
code_new/NR_dynesty_t0_loop.py
+
17
−
174
View file @
ae6a0d9d
#!/usr/bin/env python
# coding: utf-8
# In[2]:
#Import relevant modules, import data and all that
import
numpy
as
np
from
scipy
import
interpolate
...
...
@@ -48,10 +42,6 @@ except SystemExit:
parser
.
sections
()
pass
# In[3]:
# path
rootpath
=
parser
.
get
(
'
nr-paths
'
,
'
rootpath
'
)
...
...
@@ -65,18 +55,10 @@ output_folder = parser.get('output-folder','output-folder')
overwrite
=
parser
.
get
(
'
setup
'
,
'
overwrite
'
)
downfactor
=
np
.
int
(
parser
.
get
(
'
setup
'
,
'
plot_down_factor
'
))
# In[4]:
if
not
os
.
path
.
exists
(
output_folder
):
os
.
mkdir
(
output_folder
)
print
(
"
Directory
"
,
output_folder
,
"
Created
"
)
# In[5]:
# time config
tshift
=
parser
.
get
(
'
time-setup
'
,
'
tshift
'
)
...
...
@@ -88,10 +70,6 @@ tend = np.float(tend)
t_align
=
parser
.
get
(
'
time-setup
'
,
'
t_align
'
)
t_align
=
np
.
float
(
t_align
)
# In[6]:
# n-tones & nlive
nmax
=
parser
.
get
(
'
n-tones
'
,
'
nmax
'
)
...
...
@@ -100,10 +78,6 @@ nmax = np.int(nmax)
npoints
=
parser
.
get
(
'
n-live-points
'
,
'
npoints
'
)
npoints
=
np
.
int
(
npoints
)
# In[7]:
# model
model
=
parser
.
get
(
'
rd-model
'
,
'
model
'
)
error_str
=
eval
(
parser
.
get
(
'
rd-model
'
,
'
error_str
'
))
...
...
@@ -119,18 +93,17 @@ print('nmax:',nmax)
print
(
'
tshift:
'
,
tshift
)
print
(
'
error:
'
,
error_str
)
# In[8]:
output_folder_1
=
output_folder
+
'
/
'
+
model
+
'
-nmax
'
+
str
(
nmax
)
if
not
os
.
path
.
exists
(
output_folder_1
):
os
.
mkdir
(
output_folder_1
)
print
(
"
Directory
"
,
output_folder_1
,
"
Created
"
)
corner_plot
=
output_folder_1
+
'
/Dynesty_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot.png
'
diagnosis_plot
=
output_folder_1
+
'
/Dynesty_diagnosis
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
.png
'
fit_plot
=
output_folder_1
+
'
/Fit_results_
'
+
str
(
simulation_number
)
+
'
tshift_
'
+
str
(
tshift
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.png
'
# In[9]:
sumary_data
=
output_folder_1
+
'
/summary
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
best_data
=
output_folder_1
+
'
/best_values_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
# loading priors
w_mins
=
np
.
empty
(
nmax
+
1
)
...
...
@@ -177,10 +150,6 @@ if model == 'w-tau-fixed':
priors_max
=
np
.
concatenate
((
a_maxs
,
ph_maxs
))
prior_dim
=
len
(
priors_min
)
# In[10]:
vary_fund
=
True
#sampler parameters
...
...
@@ -225,10 +194,6 @@ def tauRD_to_t_Phys(tau,M):
c
=
2.99792458
*
10
**
8
;
G
=
6.67259
*
10
**
(
-
11
);
MS
=
1.9885
*
10
**
30
;
return
((
M
*
MS
*
G
)
/
c
**
3
)
*
tau
# In[11]:
#This loads the 22 mode data
gw
=
{}
gw
[
simulation_number
]
=
h5py
.
File
(
simulation_path_1
,
'
r
'
)
...
...
@@ -257,10 +222,6 @@ times5 = gw5_sxs_bbh_0305[:,0]
tmax5
=
FindTmaximum
(
gw5_sxs_bbh_0305
)
times5
=
times5
-
tmax5
# In[12]:
#Select the data from 0 onwards
position
=
np
.
argmax
(
times
>=
(
t_align
))
position5
=
np
.
argmax
(
times5
>=
(
t_align
))
...
...
@@ -269,10 +230,6 @@ gw_sxs_bbh_0305rd5=gw5_sxs_bbh_0305[position5+1:-1]
timesrd
=
gw_sxs_bbh_0305
[
position
:
-
1
][:,
0
][:
-
1
]
-
tmax
timesrd5
=
gw5_sxs_bbh_0305
[
position5
:
-
1
][:,
0
][:
-
1
]
-
tmax5
# In[13]:
#Test plot real part (data was picked in the last cell). Aligning in time
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
1
],
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev6$: real
'
)
...
...
@@ -281,10 +238,6 @@ plt.plot(timesrd5, gw_sxs_bbh_0305rd5[:,1], "b", alpha=0.3, lw=3, label=r'$Lev5:
plt
.
plot
(
timesrd5
,
np
.
sqrt
(
gw_sxs_bbh_0305rd5
[:,
1
]
**
2
+
gw_sxs_bbh_0305rd5
[:,
2
]
**
2
),
"
b
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5\,amp$
'
)
plt
.
legend
()
# In[14]:
#Test plot im part (data was picked in the last cell). Aligning in time
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
2
],
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev6: imag$
'
)
...
...
@@ -293,29 +246,17 @@ plt.plot(timesrd5, gw_sxs_bbh_0305rd5[:,2], "b", alpha=0.3, lw=3, label=r'$Lev5:
plt
.
plot
(
timesrd5
,
np
.
sqrt
(
gw_sxs_bbh_0305rd5
[:,
1
]
**
2
+
gw_sxs_bbh_0305rd5
[:,
2
]
**
2
),
"
b
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5\,amp$
'
)
plt
.
legend
()
# In[15]:
# Depending on nmax, you load nmax number of freqs. and damping times from the qnm package
omegas
=
[
qnm
.
modes_cache
(
s
=-
2
,
l
=
2
,
m
=
2
,
n
=
i
)(
a
=
af
)[
0
]
for
i
in
range
(
0
,
dim
)]
w
=
(
np
.
real
(
omegas
))
/
mf
tau
=-
1
/
(
np
.
imag
(
omegas
))
*
mf
# In[16]:
gwnew_re
=
interpolate
.
interp1d
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
1
],
kind
=
'
cubic
'
)
gwnew_im
=
interpolate
.
interp1d
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
2
],
kind
=
'
cubic
'
)
gwnew_re5
=
interpolate
.
interp1d
(
timesrd5
,
gw_sxs_bbh_0305rd5
[:,
1
],
kind
=
'
cubic
'
)
gwnew_im5
=
interpolate
.
interp1d
(
timesrd5
,
gw_sxs_bbh_0305rd5
[:,
2
],
kind
=
'
cubic
'
)
# In[17]:
if
timesrd5
[
-
1
]
>=
timesrd
[
-
1
]:
timesrd_final
=
timesrd
else
:
...
...
@@ -329,18 +270,10 @@ gwdatanew_im5 = gwnew_im5(timesrd_final)
gwdatanew
=
gwdatanew_re
-
1j
*
gwdatanew_im
gwdatanew5
=
gwdatanew_re5
-
1j
*
gwdatanew_im5
# In[18]:
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
0
+
90
)
error
=
np
.
sqrt
(
2
*
mismatch
)
print
(
mismatch
)
# In[19]:
# Phase alignement
phas
=
np
.
angle
(
gwdatanew
)
phas
=
np
.
unwrap
(
phas
)
...
...
@@ -349,10 +282,6 @@ phas5 = np.unwrap(phas5)
plt
.
plot
(
timesrd_final
,
phas
,
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
# In[20]:
position
=
np
.
argmax
(
timesrd_final
>=
(
t_align
))
dphase
=
phas5
[
position
]
-
phas
[
position
]
print
(
dphase
)
...
...
@@ -368,10 +297,6 @@ phas5 = np.unwrap(phas5)
plt
.
plot
(
timesrd_final
,
phas
,
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
# In[21]:
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
+
90
)
print
(
mismatch
)
if
error_str
:
...
...
@@ -379,10 +304,6 @@ if error_str:
else
:
error
=
1
# In[22]:
#Test the new interpolated data
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd_final
,
gwdatanew
.
real
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev6
'
)
...
...
@@ -390,10 +311,6 @@ plt.plot(timesrd_final, gwdatanew5.real, "b", alpha=0.3, lw=2, label='Lev5')
plt
.
plot
(
timesrd_final
,
error
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error
'
)
plt
.
legend
()
# In[23]:
#Test the error data
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd_final
,
error
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error real
'
)
...
...
@@ -401,10 +318,6 @@ plt.plot(timesrd_final, error.imag, "r", alpha=0.3, lw=2, label='error imag')
plt
.
plot
(
timesrd_final
,
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
),
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
all error
'
)
plt
.
legend
()
# In[24]:
#Take the piece of waveform you want
position_in
=
np
.
argmax
(
timesrd_final
>=
tshift
)
position_end
=
np
.
argmax
(
timesrd_final
>=
tend
)
...
...
@@ -413,10 +326,6 @@ gwdatanew_re_tsh = gwdatanew_re[position_in:position_end]
gwdatanew_im_tsh
=
gwdatanew_im
[
position_in
:
position_end
]
error_tsh
=
error
[
position_in
:
position_end
]
# In[25]:
#Fitting
#RD model for nmax tones. Amplitudes are in (xn*Exp[i yn]) version. Used here.
def
model_dv_q
(
theta
):
...
...
@@ -488,16 +397,8 @@ def log_probability(theta):
return
-
np
.
inf
return
lp
+
log_likelihood
(
theta
)
# In[26]:
dict
=
{
'
w-tau
'
:
model_dv_tau
,
'
w-q
'
:
model_dv_q
,
'
w-tau-fixed
'
:
model_dv
}
# In[27]:
#I need to provid an initial guess for 4*(nmax+1) the parameters
np
.
random
.
seed
(
42
)
nll
=
lambda
*
args
:
-
log_likelihood
(
*
args
)
...
...
@@ -508,17 +409,9 @@ print("Maximum likelihood estimates:")
vars_ml
=
soln
.
x
print
(
vars_ml
)
# In[28]:
f2
=
dynesty
.
NestedSampler
(
log_likelihood
,
prior_transform
,
prior_dim
,
nlive
=
npoints
,
sample
=
'
rwalk
'
)
f2
.
run_nested
()
# In[29]:
wstr
=
r
'
$\omega_
'
if
model
==
'
w-tau
'
:
...
...
@@ -547,10 +440,6 @@ labels = np.concatenate((w_lab,tau_lab,amp_lab,pha_lab))
if
model
==
'
w-tau-fixed
'
:
labels
=
np
.
concatenate
((
amp_lab
,
pha_lab
))
# In[30]:
if
model
==
'
w-tau-fixed
'
:
rg
=
(
nmax
+
1
)
else
:
...
...
@@ -570,56 +459,31 @@ else:
amps_aux
=
samps_tr
[
i
][
half_points
:
-
1
]
npamps
[
i
]
=
np
.
quantile
(
amps_aux
,
0.5
)
# In[31]:
res
=
f2
.
results
res
.
samples_u
.
shape
res
.
summary
()
samps
=
f2
.
results
.
samples
# In[32]:
evidence
=
res
.
logz
[
-
1
]
evidence_error
=
res
.
logzerr
[
-
1
]
# In[33]:
summary_titles
=
[
'
n
'
,
'
id
'
,
'
t_shift
'
,
'
dlogz
'
,
'
dlogz_err
'
]
f
=
output_folder_1
+
'
/summary
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
# In[35]:
if
os
.
path
.
exists
(
f
):
if
os
.
path
.
exists
(
sumary_data
):
outvalues
=
np
.
array
([[
nmax
,
simulation_number
,
tshift
,
evidence
,
evidence_error
]])
else
:
outvalues
=
np
.
array
([
summary_titles
,[
nmax
,
simulation_number
,
tshift
,
evidence
,
evidence_error
]])
with
open
(
f
,
'
a
'
)
as
file
:
with
open
(
sumary_data
,
'
a
'
)
as
file
:
writer
=
csv
.
writer
(
file
)
if
(
outvalues
.
shape
)[
0
]
>
1
:
writer
.
writerows
(
outvalues
)
else
:
writer
.
writerow
(
outvalues
[
0
])
# In[36]:
samps
=
f2
.
results
.
samples
samps_tr
=
np
.
transpose
(
samps
)
# In[37]:
sigma_vars_m
=
np
.
empty
(
prior_dim
)
sigma_vars_p
=
np
.
empty
(
prior_dim
)
sigma_vars
=
np
.
empty
(
prior_dim
)
...
...
@@ -629,29 +493,16 @@ for i in range(prior_dim):
sigma_vars
[
i
]
=
np
.
quantile
(
amps_aux
,
0.5
)
sigma_vars_p
[
i
]
=
np
.
quantile
(
amps_aux
,
0.9
)
# In[38]:
sigma_vars_all
=
[
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
]
sigma_vars_all
=
np
.
stack
([
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
],
axis
=
0
)
# In[69]:
key
=
[
'
max val
'
,
'
lower bound
'
,
'
higher bound
'
]
file
=
output_folder_1
+
'
/best_values_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
dfslist
=
[
pd
.
DataFrame
(
np
.
concatenate
(([
tshift
],
sigma_vars_all
[
1
])).
reshape
((
-
1
,
prior_dim
+
1
)),
columns
=
np
.
concatenate
(([
'
tshift
'
],
labels
)),
index
=
[
key
[
i
]])
for
i
in
range
(
3
)]
df2
=
pd
.
concat
(
dfslist
)
if
os
.
path
.
exists
(
file
):
df2
.
to_csv
(
file
,
mode
=
'
a
'
,
header
=
False
,
index
=
True
)
if
os
.
path
.
exists
(
best_data
):
df2
.
to_csv
(
best_data
,
mode
=
'
a
'
,
header
=
False
,
index
=
True
)
else
:
df2
.
to_csv
(
file
,
index
=
True
)
# In[42]:
df2
.
to_csv
(
best_data
,
index
=
True
)
if
model
==
'
w-q
'
:
tau_val
=
np
.
pi
*
w
*
tau
...
...
@@ -662,10 +513,6 @@ elif model == 'w-tau':
elif
model
==
'
w-tau-fixed
'
:
truths
=
npamps
# In[43]:
fg
,
ax
=
dyplot
.
cornerplot
(
res
,
color
=
'
blue
'
,
show_titles
=
True
,
labels
=
labels
,
...
...
@@ -674,15 +521,15 @@ fg, ax = dyplot.cornerplot(res, color='blue',
truth_color
=
'
red
'
,
)
fg
.
savefig
(
corner_plot
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
)
# In[127]:
fg
.
savefig
(
output_folder_1
+
'
/Dynesty_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
_chainplot.png
'
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
)
from
dynesty
import
plotting
as
dyplot
# In[148]:
lnz_truth
=
ndim
*
-
np
.
log
(
2
*
10.
)
# analytic evidence solution
fig
,
axes
=
dyplot
.
runplot
(
res
,
lnz_truth
=
lnz_truth
)
fig
.
tight_layout
()
fig
.
savefig
(
diagnosis_plot
,
format
=
'
png
'
,
dpi
=
384
,
bbox_inches
=
'
tight
'
)
figband
=
plt
.
figure
(
figsize
=
(
12
,
9
))
plt
.
plot
(
timesrd_final_tsh
,
gwdatanew_re_tsh
,
"
green
"
,
alpha
=
0.9
,
lw
=
3
,
label
=
r
'
$res_{240}$
'
)
...
...
@@ -698,10 +545,6 @@ plt.xlabel('t')
plt
.
ylabel
(
'
h
'
)
plt
.
show
()
# In[149]:
fit_plot
=
output_folder_1
+
'
/Fit_results_
'
+
str
(
simulation_number
)
+
'
tshift_
'
+
str
(
tshift
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.png
'
figband
.
savefig
(
fit_plot
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
sign in
to comment