Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
R
RDStackingProject
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Yifan Wang
RDStackingProject
Commits
cb4e509e
Commit
cb4e509e
authored
4 years ago
by
frcojimenez
Browse files
Options
Downloads
Patches
Plain Diff
added option to fix mass and spin
parent
fe0a08c3
No related branches found
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
code_new/NR_dynesty_t0_loop.ipynb
+502
-436
502 additions, 436 deletions
code_new/NR_dynesty_t0_loop.ipynb
code_new/NR_dynesty_t0_loop.py
+556
-139
556 additions, 139 deletions
code_new/NR_dynesty_t0_loop.py
with
1058 additions
and
575 deletions
code_new/NR_dynesty_t0_loop.ipynb
+
502
−
436
View file @
cb4e509e
Source diff could not be displayed: it is too large. Options to address this:
view the blob
.
This diff is collapsed.
Click to expand it.
code_new/NR_dynesty_t0_loop.py
+
556
−
139
View file @
cb4e509e
#!/usr/bin/env python
# coding: utf-8
# In[286]:
#Import relevant modules, import data and all that
import
numpy
as
np
from
scipy
import
interpolate
...
...
@@ -27,6 +33,12 @@ import csv
import
argparse
import
scipy.optimize
as
optimization
from
scipy.optimize
import
minimize
from
scipy.interpolate
import
interp1d
from
pycbc.conversions
import
get_lm_f0tau_allmodes
from
scipy.optimize
import
fsolve
from
scipy.optimize
import
least_squares
try
:
parser
=
argparse
.
ArgumentParser
(
description
=
"
Simple argument parser
"
)
...
...
@@ -38,10 +50,14 @@ try:
parser
.
sections
()
except
SystemExit
:
parser
=
ConfigParser
()
parser
.
read
(
'
config_
n1
.ini
'
)
parser
.
read
(
'
config_
fixed_n1_m_af
.ini
'
)
parser
.
sections
()
pass
# In[287]:
# path
rootpath
=
parser
.
get
(
'
nr-paths
'
,
'
rootpath
'
)
...
...
@@ -55,13 +71,30 @@ output_folder = parser.get('output-folder','output-folder')
overwrite
=
parser
.
get
(
'
setup
'
,
'
overwrite
'
)
downfactor
=
np
.
int
(
parser
.
get
(
'
setup
'
,
'
plot_down_factor
'
))
sampler
=
parser
.
get
(
'
setup
'
,
'
sampler
'
)
nr_code
=
parser
.
get
(
'
setup
'
,
'
nr_code
'
)
# In[288]:
if
parser
.
has_option
(
'
setup
'
,
'
nb_cores
'
):
nbcores
=
np
.
int
(
parser
.
get
(
'
setup
'
,
'
nb_cores
'
))
else
:
nbcores
=
1
# In[289]:
if
not
os
.
path
.
exists
(
output_folder
):
os
.
mkdir
(
output_folder
)
print
(
"
Directory
"
,
output_folder
,
"
Created
"
)
# time config
# In[290]:
# time config
tshift
=
parser
.
get
(
'
time-setup
'
,
'
tshift
'
)
tshift
=
np
.
float
(
tshift
)
...
...
@@ -71,6 +104,10 @@ tend = np.float(tend)
t_align
=
parser
.
get
(
'
time-setup
'
,
'
t_align
'
)
t_align
=
np
.
float
(
t_align
)
# In[291]:
# n-tones & nlive
nmax
=
parser
.
get
(
'
n-tones
'
,
'
nmax
'
)
...
...
@@ -79,23 +116,28 @@ nmax = np.int(nmax)
npoints
=
parser
.
get
(
'
n-live-points
'
,
'
npoints
'
)
npoints
=
np
.
int
(
npoints
)
# In[292]:
# model
model
=
parser
.
get
(
'
rd-model
'
,
'
model
'
)
error_str
=
eval
(
parser
.
get
(
'
rd-model
'
,
'
error_str
'
))
if
error_str
:
error_val
=
np
.
float
(
parser
.
get
(
'
rd-model
'
,
'
error_val
'
))
if
error_val
==
0
:
error_type
=
'
NR_estimate
'
error_type
=
''
else
:
error_type
=
error_val
else
:
error_type
=
'
False
'
error_val
=
0
if
model
==
'
w-tau
'
:
tau_var_str
=
'
tau
'
elif
model
==
'
w-q
'
:
tau_var_str
=
'
q
'
elif
model
==
'
w-tau-fixed
'
:
if
model
==
'
w-q
'
:
tau_var_str
=
'
q
'
else
:
tau_var_str
=
'
tau
'
print
(
'
model:
'
,
model
)
print
(
'
nmax:
'
,
nmax
)
...
...
@@ -103,6 +145,10 @@ print('tshift:',tshift)
print
(
'
error:
'
,
error_str
)
print
(
'
error value:
'
,
error_type
)
# In[293]:
if
error_str
:
output_folder_1
=
output_folder
+
'
/
'
+
model
+
'
-nmax
'
+
str
(
nmax
)
+
'
_
'
+
str
(
error_str
)
+
'
_
'
+
str
(
error_type
)
else
:
...
...
@@ -112,59 +158,26 @@ if not os.path.exists(output_folder_1):
os
.
mkdir
(
output_folder_1
)
print
(
"
Directory
"
,
output_folder_1
,
"
Created
"
)
# In[294]:
corner_plot
=
output_folder_1
+
'
/Dynesty_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot.png
'
corner_plot_extra
=
output_folder_1
+
'
/Dynesty_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
corner_plot_extra.png
'
diagnosis_plot
=
output_folder_1
+
'
/Dynesty_diagnosis
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax=
'
+
str
(
nmax
)
+
'
_tshift=
'
+
str
(
tshift
)
+
'
_
'
+
str
(
npoints
)
+
'
.png
'
fit_plot
=
output_folder_1
+
'
/Fit_results_
'
+
str
(
simulation_number
)
+
'
tshift_
'
+
str
(
tshift
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.png
'
samples_file
=
output_folder_1
+
'
/posterior_samples-
'
+
str
(
simulation_number
)
+
'
tshift_
'
+
str
(
tshift
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
sumary_data
=
output_folder_1
+
'
/summary
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
best_data
=
output_folder_1
+
'
/best_values_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
# In[295]:
# loading priors
w_mins
=
np
.
empty
(
nmax
+
1
)
w_maxs
=
np
.
empty
(
nmax
+
1
)
tau_mins
=
np
.
empty
(
nmax
+
1
)
tau_maxs
=
np
.
empty
(
nmax
+
1
)
a_mins
=
np
.
empty
(
nmax
+
1
)
a_maxs
=
np
.
empty
(
nmax
+
1
)
ph_mins
=
np
.
empty
(
nmax
+
1
)
ph_maxs
=
np
.
empty
(
nmax
+
1
)
for
i
in
range
(
nmax
+
1
):
wp_min
=
parser
.
get
(
'
prior-w
'
+
str
(
i
),
'
w
'
+
str
(
i
)
+
'
_min
'
)
w_mins
[
i
]
=
np
.
float
(
wp_min
)
wp_max
=
parser
.
get
(
'
prior-w
'
+
str
(
i
),
'
w
'
+
str
(
i
)
+
'
_max
'
)
w_maxs
[
i
]
=
np
.
float
(
wp_max
)
taup_min
=
parser
.
get
(
'
prior-
'
+
tau_var_str
+
str
(
i
),
tau_var_str
+
str
(
i
)
+
'
_min
'
)
tau_mins
[
i
]
=
np
.
float
(
taup_min
)
taup_max
=
parser
.
get
(
'
prior-
'
+
tau_var_str
+
str
(
i
),
tau_var_str
+
str
(
i
)
+
'
_max
'
)
tau_maxs
[
i
]
=
np
.
float
(
taup_max
)
amp0_min
=
parser
.
get
(
'
prior-amp
'
+
str
(
i
),
'
amp
'
+
str
(
i
)
+
'
_min
'
)
a_mins
[
i
]
=
np
.
float
(
amp0_min
)
amp1_max
=
parser
.
get
(
'
prior-amp
'
+
str
(
i
),
'
amp
'
+
str
(
i
)
+
'
_max
'
)
a_maxs
[
i
]
=
np
.
float
(
amp1_max
)
phase_min
=
parser
.
get
(
'
prior-phase
'
+
str
(
i
),
'
phase
'
+
str
(
i
)
+
'
_min
'
)
ph_mins
[
i
]
=
np
.
float
(
phase_min
)
*
2
*
np
.
pi
sumary_data
=
output_folder_1
+
'
/summary
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
best_data
=
output_folder_1
+
'
/best_values_
'
+
str
(
simulation_number
)
+
'
_
'
+
model
+
'
_nmax_
'
+
str
(
nmax
)
+
'
.csv
'
phase_max
=
parser
.
get
(
'
prior-phase
'
+
str
(
i
),
'
phase
'
+
str
(
i
)
+
'
_max
'
)
ph_maxs
[
i
]
=
np
.
float
(
phase_max
)
*
2
*
np
.
pi
priors_min
=
np
.
concatenate
((
w_mins
,
tau_mins
,
a_mins
,
ph_mins
))
priors_max
=
np
.
concatenate
((
w_maxs
,
tau_maxs
,
a_maxs
,
ph_maxs
))
prior_dim
=
len
(
priors_min
)
# In[296]:
if
model
==
'
w-tau-fixed
'
:
priors_min
=
np
.
concatenate
((
a_mins
,
ph_mins
))
priors_max
=
np
.
concatenate
((
a_maxs
,
ph_maxs
))
prior_dim
=
len
(
priors_min
)
vary_fund
=
True
...
...
@@ -234,17 +247,81 @@ def twopoint_autocovariance(t,n):
res
[
tau
]
=
np
.
sum
(
n
*
ntau
).
real
return
(
taus
[:
int
(
len
(
n
)
/
2
)],
res
[:
int
(
len
(
n
)
/
2
)])
#This loads the 22 mode data
def
QNM_spectrum
(
mf
,
af
,
l
,
m
):
omegas_new
=
[
qnm
.
modes_cache
(
s
=-
2
,
l
=
l
,
m
=
m
,
n
=
i
)(
a
=
af
)[
0
]
for
i
in
range
(
0
,
dim
)]
w_m_a
=
(
np
.
real
(
omegas_new
))
/
mf
tau_m_a
=-
1
/
(
np
.
imag
(
omegas_new
))
*
mf
return
(
w_m_a
,
tau_m_a
)
# In[297]:
gw
=
{}
gw
[
simulation_number
]
=
h5py
.
File
(
simulation_path_1
,
'
r
'
)
if
nr_code
==
'
SXS
'
:
gw_sxs_bbh_0305
=
gw
[
simulation_number
][
"
Extrapolated_N3.dir
"
][
"
Y_l2_m2.dat
"
]
times
=
gw_sxs_bbh_0305
[:,
0
]
gw5
=
{}
gw5
[
simulation_number
]
=
h5py
.
File
(
simulation_path_2
,
'
r
'
)
gw5_sxs_bbh_0305
=
gw5
[
simulation_number
][
"
Extrapolated_N3.dir
"
][
"
Y_l2_m2.dat
"
]
# Remember to download metadata.json from the simulation with number: 0305. Download Lev6/metadata.json
# This postprocesses the metadata file to find the final mass and final spin
elif
nr_code
==
'
Maya
'
:
gw_sxs_bbh_0305_amp
=
np
.
asarray
(
gw
[
simulation_number
][
'
amp_l2_m2/Y
'
])[
6
:]
gw_sxs_bbh_0305_amp_err
=
np
.
asarray
(
gw
[
simulation_number
][
'
amp_l2_m2/errors
'
])
times
=
np
.
asarray
(
gw
[
simulation_number
][
'
amp_l2_m2/X
'
])[
6
:]
gw_sxs_bbh_0305_amp_int
=
interp1d
(
times
,
-
gw_sxs_bbh_0305_amp
,
kind
=
'
cubic
'
)
gw_sxs_bbh_0305_amp_errs_int
=
interp1d
(
times
,
gw_sxs_bbh_0305_amp_err
,
kind
=
'
cubic
'
)
gw_sxs_bbh_0305_pha
=
np
.
asarray
(
gw
[
simulation_number
][
'
phase_l2_m2/Y
'
])[
6
:]
gw_sxs_bbh_0305_pha_err
=
np
.
asarray
(
gw
[
simulation_number
][
'
phase_l2_m2/errors
'
])
times
=
np
.
asarray
(
gw
[
simulation_number
][
'
phase_l2_m2/X
'
])[
6
:]
gw_sxs_bbh_0305_pha_int
=
interp1d
(
times
,
-
gw_sxs_bbh_0305_pha
,
kind
=
'
cubic
'
)
gw_sxs_bbh_0305_pha_errs_int
=
interp1d
(
times
,
gw_sxs_bbh_0305_pha_err
,
kind
=
'
cubic
'
)
amps
=
gw_sxs_bbh_0305_amp_int
(
times
)
amps_err
=
gw_sxs_bbh_0305_amp_errs_int
(
times
)
phs
=
gw_sxs_bbh_0305_pha_int
(
times
)
phs_err
=-
gw_sxs_bbh_0305_pha_errs_int
(
times
)
gw_sxs_bbh_0305
=
np
.
asarray
([
times
,
amps
*
np
.
cos
(
phs
),
amps
*
np
.
sin
(
phs
)]).
T
gw5_sxs_bbh_0305
=
np
.
asarray
([
times
,(
amps
+
amps_err
)
*
np
.
cos
(
phs
+
phs_err
),
amps
*
np
.
sin
(
phs
+
phs_err
)]).
T
elif
nr_code
==
'
LaZeV
'
:
gw_sxs_bbh_0305_amp
=
np
.
asarray
(
gw
[
simulation_number
][
'
amp_l2_m2/Y
'
])[
6
:]
gw_sxs_bbh_0305_amp_err
=
np
.
asarray
(
gw
[
simulation_number
][
'
amp_l2_m2/errors
'
])
times_1
=
np
.
asarray
(
gw
[
simulation_number
][
'
amp_l2_m2/X
'
])[
6
:]
gw_sxs_bbh_0305_amp_int
=
interp1d
(
times_1
,
-
gw_sxs_bbh_0305_amp
,
kind
=
'
cubic
'
)
gw_sxs_bbh_0305_amp_errs_int
=
interp1d
(
times_1
,
gw_sxs_bbh_0305_amp_err
,
kind
=
'
cubic
'
)
gw_sxs_bbh_0305_pha
=
np
.
asarray
(
gw
[
simulation_number
][
'
phase_l2_m2/Y
'
])[
6
:]
gw_sxs_bbh_0305_pha_err
=
np
.
asarray
(
gw
[
simulation_number
][
'
phase_l2_m2/errors
'
])
times
=
np
.
asarray
(
gw
[
simulation_number
][
'
phase_l2_m2/X
'
])[
6
:]
gw_sxs_bbh_0305_pha_int
=
interp1d
(
times
,
-
gw_sxs_bbh_0305_pha
,
kind
=
'
cubic
'
)
gw_sxs_bbh_0305_pha_errs_int
=
interp1d
(
times
,
gw_sxs_bbh_0305_pha_err
,
kind
=
'
cubic
'
)
amps
=
gw_sxs_bbh_0305_amp_int
(
times_1
)
amps_err
=
gw_sxs_bbh_0305_amp_errs_int
(
times_1
)
phs
=
gw_sxs_bbh_0305_pha_int
(
times_1
)
phs_err
=-
gw_sxs_bbh_0305_pha_errs_int
(
times_1
)
gw_sxs_bbh_0305
=
np
.
asarray
([
times_1
,
amps
*
np
.
cos
(
phs
),
amps
*
np
.
sin
(
phs
)]).
T
gw5_sxs_bbh_0305
=
np
.
asarray
([
times_1
,(
amps
+
amps_err
)
*
np
.
cos
(
phs
+
phs_err
),
amps
*
np
.
sin
(
phs
+
phs_err
)]).
T
times
=
times_1
# In[298]:
if
nr_code
==
'
SXS
'
:
metadata
=
{}
with
open
(
metadata_file
)
as
file
:
metadata
[
simulation_number
]
=
json
.
load
(
file
)
...
...
@@ -252,16 +329,95 @@ with open(metadata_file) as file:
af
=
metadata
[
simulation_number
][
'
remnant_dimensionless_spin
'
][
-
1
]
mf
=
metadata
[
simulation_number
][
'
remnant_mass
'
]
elif
nr_code
==
'
Maya
'
:
af
=
0.6861
mf
=
0.9515
elif
nr_code
==
'
LaZeV
'
:
af
=
0.692
mf
=
0.952
#times --> x axis of your data
times
=
gw_sxs_bbh_0305
[:,
0
]
tmax
=
FindTmaximum
(
gw_sxs_bbh_0305
)
tmax
=
FindTmaximum
(
gw_sxs_bbh_0305
[
round
(
len
(
gw_sxs_bbh_0305
)
/
2
):]
)
times
=
times
-
tmax
#times 6--> x axis of your data
times5
=
gw5_sxs_bbh_0305
[:,
0
]
tmax5
=
FindTmaximum
(
gw5_sxs_bbh_0305
)
tmax5
=
FindTmaximum
(
gw5_sxs_bbh_0305
[
round
(
len
(
gw_sxs_bbh_0305
)
/
2
):]
)
times5
=
times5
-
tmax5
# In[299]:
w
,
tau
=
QNM_spectrum
(
mf
,
af
,
2
,
2
)
# In[300]:
# loading priors
w_mins
=
np
.
empty
(
nmax
+
1
)
w_maxs
=
np
.
empty
(
nmax
+
1
)
tau_mins
=
np
.
empty
(
nmax
+
1
)
tau_maxs
=
np
.
empty
(
nmax
+
1
)
a_mins
=
np
.
empty
(
nmax
+
1
)
a_maxs
=
np
.
empty
(
nmax
+
1
)
ph_mins
=
np
.
empty
(
nmax
+
1
)
ph_maxs
=
np
.
empty
(
nmax
+
1
)
for
i
in
range
(
nmax
+
1
):
wp_min
=
parser
.
get
(
'
prior-w
'
+
str
(
i
),
'
w
'
+
str
(
i
)
+
'
_min
'
)
w_mins
[
i
]
=
np
.
float
(
wp_min
)
wp_max
=
parser
.
get
(
'
prior-w
'
+
str
(
i
),
'
w
'
+
str
(
i
)
+
'
_max
'
)
w_maxs
[
i
]
=
np
.
float
(
wp_max
)
taup_min
=
parser
.
get
(
'
prior-
'
+
tau_var_str
+
str
(
i
),
tau_var_str
+
str
(
i
)
+
'
_min
'
)
tau_mins
[
i
]
=
np
.
float
(
taup_min
)
taup_max
=
parser
.
get
(
'
prior-
'
+
tau_var_str
+
str
(
i
),
tau_var_str
+
str
(
i
)
+
'
_max
'
)
tau_maxs
[
i
]
=
np
.
float
(
taup_max
)
amp0_min
=
parser
.
get
(
'
prior-amp
'
+
str
(
i
),
'
amp
'
+
str
(
i
)
+
'
_min
'
)
a_mins
[
i
]
=
np
.
float
(
amp0_min
)
amp1_max
=
parser
.
get
(
'
prior-amp
'
+
str
(
i
),
'
amp
'
+
str
(
i
)
+
'
_max
'
)
a_maxs
[
i
]
=
np
.
float
(
amp1_max
)
phase_min
=
parser
.
get
(
'
prior-phase
'
+
str
(
i
),
'
phase
'
+
str
(
i
)
+
'
_min
'
)
ph_mins
[
i
]
=
np
.
float
(
phase_min
)
*
2
*
np
.
pi
phase_max
=
parser
.
get
(
'
prior-phase
'
+
str
(
i
),
'
phase
'
+
str
(
i
)
+
'
_max
'
)
ph_maxs
[
i
]
=
np
.
float
(
phase_max
)
*
2
*
np
.
pi
priors_min
=
np
.
concatenate
((
w_mins
,
tau_mins
,
a_mins
,
ph_mins
))
priors_max
=
np
.
concatenate
((
w_maxs
,
tau_maxs
,
a_maxs
,
ph_maxs
))
prior_dim
=
len
(
priors_min
)
priors
=
np
.
column_stack
((
priors_min
,
priors_max
))
if
model
==
'
w-tau-fixed
'
:
priors_min
=
np
.
concatenate
((
a_mins
,
ph_mins
))
priors_max
=
np
.
concatenate
((
a_maxs
,
ph_maxs
))
prior_dim
=
len
(
priors_min
)
priors
=
np
.
column_stack
((
priors_min
,
priors_max
))
elif
model
==
'
w-tau-fixed-m-af
'
:
mass_min
=
[
np
.
float
(
parser
.
get
(
'
prior-mass
'
,
'
mass_min
'
))]
mass_max
=
[
np
.
float
(
parser
.
get
(
'
prior-mass
'
,
'
mass_max
'
))]
spin_min
=
[
np
.
float
(
parser
.
get
(
'
prior-spin
'
,
'
spin_min
'
))]
spin_max
=
[
np
.
float
(
parser
.
get
(
'
prior-spin
'
,
'
spin_max
'
))]
priors_min
=
np
.
concatenate
((
a_mins
,
ph_mins
,
mass_min
,
spin_min
))
priors_max
=
np
.
concatenate
((
a_maxs
,
ph_maxs
,
mass_max
,
spin_max
))
prior_dim
=
len
(
priors_min
)
priors
=
np
.
column_stack
((
priors_min
,
priors_max
))
# In[301]:
#Select the data from 0 onwards
position
=
np
.
argmax
(
times
>=
(
t_align
))
position5
=
np
.
argmax
(
times5
>=
(
t_align
))
...
...
@@ -270,6 +426,10 @@ gw_sxs_bbh_0305rd5=gw5_sxs_bbh_0305[position5+1:]
timesrd
=
gw_sxs_bbh_0305
[
position
:
-
1
][:,
0
][:]
-
tmax
timesrd5
=
gw5_sxs_bbh_0305
[
position5
:
-
1
][:,
0
][:]
-
tmax5
# In[302]:
#Test plot real part (data was picked in the last cell). Aligning in time
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
1
],
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev6$: real
'
)
...
...
@@ -278,18 +438,9 @@ plt.plot(timesrd5, gw_sxs_bbh_0305rd5[:,1], "b", alpha=0.3, lw=3, label=r'$Lev5:
plt
.
plot
(
timesrd5
,
np
.
sqrt
(
gw_sxs_bbh_0305rd5
[:,
1
]
**
2
+
gw_sxs_bbh_0305rd5
[:,
2
]
**
2
),
"
b
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5\,amp$
'
)
plt
.
legend
()
#Test plot im part (data was picked in the last cell). Aligning in time
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
2
],
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev6: imag$
'
)
plt
.
plot
(
timesrd
,
np
.
sqrt
(
gw_sxs_bbh_0305rd
[:,
1
]
**
2
+
gw_sxs_bbh_0305rd
[:,
2
]
**
2
),
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5\,amp$
'
)
plt
.
plot
(
timesrd5
,
gw_sxs_bbh_0305rd5
[:,
2
],
"
b
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5: imag$
'
)
plt
.
plot
(
timesrd5
,
np
.
sqrt
(
gw_sxs_bbh_0305rd5
[:,
1
]
**
2
+
gw_sxs_bbh_0305rd5
[:,
2
]
**
2
),
"
b
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$Lev5\,amp$
'
)
plt
.
legend
()
# Depending on nmax, you load nmax number of freqs. and damping times from the qnm package
omegas
=
[
qnm
.
modes_cache
(
s
=-
2
,
l
=
2
,
m
=
2
,
n
=
i
)(
a
=
af
)[
0
]
for
i
in
range
(
0
,
dim
)]
w
=
(
np
.
real
(
omegas
))
/
mf
tau
=-
1
/
(
np
.
imag
(
omegas
))
*
mf
# In[303]:
gwnew_re
=
interpolate
.
interp1d
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
1
],
kind
=
'
cubic
'
)
gwnew_im
=
interpolate
.
interp1d
(
timesrd
,
gw_sxs_bbh_0305rd
[:,
2
],
kind
=
'
cubic
'
)
...
...
@@ -297,6 +448,10 @@ gwnew_im = interpolate.interp1d(timesrd, gw_sxs_bbh_0305rd[:,2], kind = 'cubic')
gwnew_re5
=
interpolate
.
interp1d
(
timesrd5
,
gw_sxs_bbh_0305rd5
[:,
1
],
kind
=
'
cubic
'
)
gwnew_im5
=
interpolate
.
interp1d
(
timesrd5
,
gw_sxs_bbh_0305rd5
[:,
2
],
kind
=
'
cubic
'
)
# In[304]:
if
timesrd5
[
-
1
]
>=
timesrd
[
-
1
]:
timesrd_final
=
timesrd
else
:
...
...
@@ -310,13 +465,21 @@ gwdatanew_im5 = gwnew_im5(timesrd_final)
gwdatanew
=
gwdatanew_re
-
1j
*
gwdatanew_im
gwdatanew5
=
gwdatanew_re5
-
1j
*
gwdatanew_im5
taus
,
corr
=
twopoint_autocovariance
(
timesrd
,
gwdatanew
-
gwdatanew5
)
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
taus
,
corr
,
'
ro
'
)
plt
.
show
()
vmax
=
np
.
max
(
corr
)
index
=
np
.
argmax
(
corr
==
vmax
)
taus
[
index
]
# In[305]:
#taus, corr= twopoint_autocovariance(timesrd,gwdatanew-gwdatanew5)
#plt.figure(figsize = (12, 8))
#plt.plot(taus, corr,'ro')
#plt.show()
#vmax=np.max(corr)
#index = np.argmax(corr == vmax)
#taus[index]
# In[306]:
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
0
+
90
)
error
=
np
.
sqrt
(
2
*
mismatch
)
...
...
@@ -324,6 +487,10 @@ print('error estimate:',error)
print
(
'
mismatch:
'
,
mismatch
)
print
(
'
snr:
'
,
EasySNRT
(
timesrd_final
,
gwdatanew
,
gwdatanew
,
0
,
0
+
90
)
/
error
**
2
)
# In[307]:
if
error_str
and
error_val
==
0
:
error
=
np
.
sqrt
(
gwdatanew
*
gwdatanew
-
2
*
gwdatanew
*
gwdatanew5
+
gwdatanew5
*
gwdatanew5
)
error_est
=
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
)
...
...
@@ -333,37 +500,30 @@ if error_str and error_val==0:
plt
.
plot
(
timesrd_final
,
error_est
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error
'
)
plt
.
legend
()
if
error_str
and
error_val
==
0
:
error
=
np
.
sqrt
(
gwdatanew
*
gwdatanew
-
2
*
gwdatanew
*
gwdatanew5
+
gwdatanew5
*
gwdatanew5
)
error_est
=
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
)
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
xlim
(
0
,
80
)
plt
.
plot
(
timesrd_final
,
np
.
abs
(
gwdatanew
)
/
error_est
,
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
Lev6
'
)
plt
.
legend
()
# In[308]:
if
parser
.
has_option
(
'
rd-model
'
,
'
phase_alignment
'
):
phase_alignment
=
eval
(
parser
.
get
(
'
rd-model
'
,
'
phase_alignment
'
))
else
:
phase_alignment
=
False
# In[309]:
# Phase alignement
if
phase_alignment
:
phas
=
np
.
angle
(
gwdatanew
)
phas
=
np
.
unwrap
(
phas
)
phas5
=
np
.
angle
(
gwdatanew5
)
phas5
=
np
.
unwrap
(
phas5
)
plt
.
plot
(
timesrd_final
,
phas
,
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
position
=
np
.
argmax
(
timesrd_final
>=
(
t_align
))
dphase
=
phas5
[
position
]
-
phas
[
position
]
print
(
dphase
)
gwdatanew
=
(
gwdatanew_re
-
1j
*
gwdatanew_im
)
*
np
.
exp
(
1j
*
dphase
)
#gw_sxs_bbh_0305rd6=gw6_sxs_bbh_0305[position6:-1]
#timesrd=gw_sxs_bbh_0305[position:-1][:,0][:920]
phas
=
np
.
angle
(
gwdatanew
)
phas
=
np
.
unwrap
(
phas
)
phas5
=
np
.
angle
(
gwdatanew5
)
phas5
=
np
.
unwrap
(
phas5
)
plt
.
plot
(
timesrd_final
,
phas
,
"
r
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
plt
.
plot
(
timesrd_final
,
phas5
,
"
blue
"
,
alpha
=
0.3
,
lw
=
3
,
label
=
r
'
$phase$
'
)
gw_sxs_bbh_0305rd6
=
gw6_sxs_bbh_0305
[
position6
:
-
1
]
timesrd
=
gw_sxs_bbh_0305
[
position
:
-
1
][:,
0
][:
920
]
mismatch
=
1
-
EasyMatchT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
,
0
,
+
90
)
error
=
np
.
sqrt
(
2
*
mismatch
)
print
(
'
error estimate:
'
,
error
)
...
...
@@ -377,6 +537,10 @@ else :
EasySNRT
(
timesrd_final
,
gwdatanew
,
gwdatanew5
/
error
,
0
,
0
+
90
)
# In[310]:
#Test the new interpolated data
if
error_str
and
error_val
==
0
:
plt
.
figure
(
figsize
=
(
12
,
8
))
...
...
@@ -385,12 +549,20 @@ if error_str and error_val==0:
plt
.
plot
(
timesrd_final
,
error
.
real
,
"
b
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
error
'
)
plt
.
legend
()
# In[311]:
#Test the error data
if
error_str
and
error_val
==
0
:
plt
.
figure
(
figsize
=
(
12
,
8
))
plt
.
plot
(
timesrd_final
,
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
),
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
all error
'
)
plt
.
legend
()
# In[312]:
#Test the error data
if
error_str
and
error_val
==
0
:
plt
.
figure
(
figsize
=
(
12
,
8
))
...
...
@@ -399,7 +571,12 @@ if error_str and error_val==0:
plt
.
plot
(
timesrd_final
,
gwdatanew
.
real
/
np
.
sqrt
(
error
.
imag
**
2
+
error
.
real
**
2
),
"
r
"
,
alpha
=
0.3
,
lw
=
2
,
label
=
'
all error
'
)
plt
.
legend
()
# In[313]:
#Take the piece of waveform you want
tshift
=
0
position_in
=
np
.
argmax
(
timesrd_final
>=
tshift
)
position_end
=
np
.
argmax
(
timesrd_final
>=
tend
)
timesrd_final_tsh
=
timesrd_final
[
position_in
:
position_end
]
...
...
@@ -407,8 +584,16 @@ gwdatanew_re_tsh = gwdatanew_re[position_in:position_end]
gwdatanew_im_tsh
=
gwdatanew_im
[
position_in
:
position_end
]
if
error_str
and
error_val
==
0
:
error_tsh
=
error
[
position_in
:
position_end
]
else
:
elif
error_str
and
error_val
!=
0
:
gwdatanew_re_tsh
+=
random
.
uniform
(
0
,
error_val
)
gwdatanew_im_tsh
+=
random
.
uniform
(
0
,
error_val
)
error_tsh
=
error_val
else
:
error_tsh
=
1
# In[314]:
#Fitting
#RD model for nmax tones. Amplitudes are in (xn*Exp[i yn]) version. Used here.
...
...
@@ -456,6 +641,22 @@ def model_dv(theta):
# -1j to agree with SXS convention
return
ansatz
def
model_dv_ma
(
theta
):
#x0, y0= theta
#Your nmax might not align with the dim of theta. Better check it here.
xvars
=
theta
[
:
(
dim
)]
yvars
=
theta
[(
dim
)
:
2
*
(
dim
)]
mass_vars
=
np
.
float
(
theta
[
-
2
])
spin_vars
=
np
.
float
(
theta
[
-
1
])
w_m_a
,
tau_m_a
=
QNM_spectrum
(
mass_vars
,
spin_vars
,
2
,
2
)
ansatz
=
0
for
i
in
range
(
0
,
dim
):
ansatz
+=
(
xvars
[
i
]
*
np
.
exp
(
1j
*
yvars
[
i
]))
*
np
.
exp
(
-
timesrd_final_tsh
/
tau_m_a
[
i
])
*
(
np
.
cos
(
w_m_a
[
i
]
*
timesrd_final_tsh
)
-
1j
*
np
.
sin
(
w_m_a
[
i
]
*
timesrd_final_tsh
))
# -1j to agree with SXS convention
return
ansatz
# Logprior distribution. It defines the allowed range my variables can vary over.
#It works for the (xn*Exp[iyn]) version.
...
...
@@ -481,20 +682,123 @@ def log_probability(theta):
return
-
np
.
inf
return
lp
+
log_likelihood
(
theta
)
dict
=
{
'
w-tau
'
:
model_dv_tau
,
'
w-q
'
:
model_dv_q
,
'
w-tau-fixed
'
:
model_dv
}
#I need to provid an initial guess for 4*(nmax+1) the parameters
np
.
random
.
seed
(
42
)
# In[315]:
dict
=
{
'
w-tau
'
:
model_dv_tau
,
'
w-q
'
:
model_dv_q
,
'
w-tau-fixed
'
:
model_dv
,
'
w-tau-fixed-m-af
'
:
model_dv_ma
}
# In[316]:
#nmax=2
#dim = nmax+1
#ndim = 4*dim
# loading priors
#w_mins=np.empty(nmax+1)
#w_maxs=np.empty(nmax+1)
#tau_mins=np.empty(nmax+1)
#tau_maxs=np.empty(nmax+1)
#a_mins=np.empty(nmax+1)
#a_maxs=np.empty(nmax+1)
#ph_mins=np.empty(nmax+1)
#ph_maxs=np.empty(nmax+1)
#for i in range(nmax+1):
# wp_min=parser.get('prior-w'+str(i),'w'+str(i)+'_min')
# w_mins[i] = np.float(wp_min)
# wp_max=parser.get('prior-w'+str(i),'w'+str(i)+'_max')
# w_maxs[i] = np.float(wp_max)
# taup_min=parser.get('prior-'+tau_var_str+str(i),tau_var_str+str(i)+'_min')
# tau_mins[i] = np.float(taup_min)
# taup_max=parser.get('prior-'+tau_var_str+str(i),tau_var_str+str(i)+'_max')
# tau_maxs[i] = np.float(taup_max)
# amp0_min=parser.get('prior-amp'+str(i),'amp'+str(i)+'_min')
# a_mins[i] = np.float(amp0_min)
# amp1_max=parser.get('prior-amp'+str(i),'amp'+str(i)+'_max')
# a_maxs[i] = np.float(amp1_max)
# phase_min=parser.get('prior-phase'+str(i),'phase'+str(i)+'_min')
# ph_mins[i] = np.float(phase_min)*2*np.pi
# phase_max=parser.get('prior-phase'+str(i),'phase'+str(i)+'_max')
# ph_maxs[i] = np.float(phase_max)*2*np.pi
#priors_min = np.concatenate((w_mins,tau_mins,a_mins,ph_mins))
#priors_max = np.concatenate((w_maxs,tau_maxs,a_maxs,ph_maxs))
#prior_dim = len(priors_min)
#nll = lambda *args: -log_likelihood(*args)
#initial = [w[0],w[1],w[2],tau[0],tau[1],tau[2],a_maxs[0]/2,a_maxs[1]/2,a_maxs[2]/2,1,1,1]
#bic2=np.ones(len(range(20)))
#for tshift in range(20):
# position_in = np.argmax(timesrd_final >= tshift)
# position_end = np.argmax(timesrd_final >= tend)
# timesrd_final_tsh = timesrd_final[position_in:position_end]
# gwdatanew_re_tsh = gwdatanew_re[position_in:position_end]
# gwdatanew_im_tsh = gwdatanew_im[position_in:position_end]
# error_tsh=error[position_in:position_end]
# soln = minimize(nll, initial)
# vars_ml=soln.x
# initial = vars_ml
# bic2[tshift]=2*log_likelihood(vars_ml)+len(timesrd_final_tsh)*np.log(len(timesrd_final_tsh))
# In[317]:
#plt.figure(figsize = (12, 8))
#plt.plot(np.abs(bic4), "r", alpha=0.3, lw=3, label=r'$bic: 4$')
#plt.plot(np.abs(bic3), "b", alpha=0.3, lw=3, label=r'$bic: 3$')
#plt.plot(np.abs(bic2), "cyan", alpha=0.3, lw=3, label=r'$bic: 2$')
#plt.yscale('log')
#plt.legend()
# In[322]:
nll
=
lambda
*
args
:
-
log_likelihood
(
*
args
)
initial
=
np
.
ones
(
prior_dim
)
soln
=
minimize
(
nll
,
initial
)
#x0_ml, y0_ml, a0_ml, b0_ml = soln.x
print
(
"
Maximum likelihood estimates:
"
)
if
model
==
'
w-tau-fixed-m-af
'
:
initial
=
np
.
concatenate
((
np
.
ones
(
2
*
dim
),[
0.8
,
0.9
]))
soln
=
minimize
(
nll
,
initial
,
bounds
=
priors
)
vars_ml
=
soln
.
x
elif
model
==
'
w-tau-fixed
'
:
initial
=
np
.
ones
(
2
*
dim
)
soln
=
minimize
(
nll
,
initial
,
bounds
=
priors
)
vars_ml
=
soln
.
x
else
:
initial
=
np
.
ones
(
ndim
)
soln
=
minimize
(
nll
,
initial
,
bounds
=
priors
)
vars_ml
=
soln
.
x
print
(
vars_ml
)
f2
=
dynesty
.
NestedSampler
(
log_likelihood
,
prior_transform
,
prior_dim
,
nlive
=
npoints
,
sample
=
sampler
)
f2
.
run_nested
(
dlogz
=
0.01
)
# In[323]:
mypool
=
Pool
(
nbcores
)
mypool
.
size
=
nbcores
f2
=
dynesty
.
NestedSampler
(
log_likelihood
,
prior_transform
,
prior_dim
,
nlive
=
npoints
,
sample
=
sampler
,
pool
=
mypool
)
if
parser
.
has_option
(
'
setup
'
,
'
dlogz
'
):
dlogz
=
np
.
float
(
parser
.
get
(
'
setup
'
,
'
dlogz
'
))
f2
.
run_nested
(
dlogz
=
dlogz
)
else
:
f2
.
run_nested
()
# In[325]:
wstr
=
r
'
$\omega_
'
...
...
@@ -504,6 +808,8 @@ elif model == 'w-q':
taustr
=
r
'
$q_
'
elif
model
==
'
w-tau-fixed
'
:
taustr
=
r
'
$dumb_var}
'
elif
model
==
'
w-tau-fixed-m-af
'
:
taustr
=
r
'
$\tau_
'
ampstr
=
r
'
$A_
'
phasestr
=
r
'
$\phi_
'
...
...
@@ -512,6 +818,8 @@ w_lab = [None] * dim
tau_lab
=
[
None
]
*
dim
amp_lab
=
[
None
]
*
dim
pha_lab
=
[
None
]
*
dim
mass_lab
=
[
'
mass
'
]
spin_lab
=
[
'
spin
'
]
for
i
in
range
(
dim
):
w_lab
[
i
]
=
wstr
+
str
(
i
)
+
'
$
'
...
...
@@ -519,40 +827,69 @@ for i in range(dim):
amp_lab
[
i
]
=
ampstr
+
str
(
i
)
+
'
$
'
pha_lab
[
i
]
=
phasestr
+
str
(
i
)
+
'
$
'
labels
=
np
.
concatenate
((
w_lab
,
tau_lab
,
amp_lab
,
pha_lab
))
if
model
==
'
w-tau-fixed
'
:
labels
=
np
.
concatenate
((
amp_lab
,
pha_lab
))
if
model
==
'
w-tau-fixed-m-af
'
:
pha_lab
[
i
]
=
phasestr
+
str
(
i
)
+
'
$
'
labels
=
np
.
concatenate
((
amp_lab
,
pha_lab
,
mass_lab
,
spin_lab
))
# In[337]:
if
model
==
'
w-tau-fixed
'
:
rg
=
(
nmax
+
1
)
elif
model
==
'
w-tau-fixed
'
:
rg
=
(
nmax
+
1
)
+
2
else
:
rg
=
(
nmax
+
1
)
*
2
samps
=
f2
.
results
.
samples
samps_tr
=
np
.
transpose
(
samps
)
npamps
=
np
.
empty
((
nmax
+
1
)
*
2
)
half_points
=
int
(
round
((
len
(
samps_tr
[
0
])
/
1.25
)))
if
model
!=
'
w-tau-fixed
'
:
for
i
in
range
(
0
,(
nmax
+
1
)
*
2
):
if
model
==
'
w-tau-fixed-a-mf
'
:
npamps
=
np
.
empty
((
nmax
+
1
))
for
i
in
range
(
0
,(
nmax
+
1
)):
amps_aux
=
samps_tr
[
i
+
rg
][
half_points
:
-
1
]
npamps
[
i
]
=
np
.
quantile
(
amps_aux
,
0.5
)
else
:
npamps
=
np
.
empty
((
nmax
+
1
)
*
2
)
for
i
in
range
(
0
,(
nmax
+
1
)
*
2
):
amps_aux
=
samps_tr
[
i
][
half_points
:
-
1
]
npamps
[
i
]
=
np
.
quantile
(
amps_aux
,
0.5
)
# In[338]:
res
=
f2
.
results
res
.
samples_u
.
shape
res
.
summary
()
samps
=
f2
.
results
.
samples
# In[339]:
evidence
=
res
.
logz
[
-
1
]
evidence_error
=
res
.
logzerr
[
-
1
]
# In[340]:
summary_titles
=
[
'
n
'
,
'
id
'
,
'
t_shift
'
,
'
dlogz
'
,
'
dlogz_err
'
]
# In[341]:
if
not
eval
(
overwrite
):
if
os
.
path
.
exists
(
sumary_data
):
outvalues
=
np
.
array
([[
nmax
,
simulation_number
,
tshift
,
evidence
,
evidence_error
]])
...
...
@@ -566,9 +903,17 @@ if not eval(overwrite):
else
:
writer
.
writerow
(
outvalues
[
0
])
# In[342]:
samps
=
f2
.
results
.
samples
samps_tr
=
np
.
transpose
(
samps
)
# In[343]:
sigma_vars_m
=
np
.
empty
(
prior_dim
)
sigma_vars_p
=
np
.
empty
(
prior_dim
)
sigma_vars
=
np
.
empty
(
prior_dim
)
...
...
@@ -578,9 +923,17 @@ for i in range(prior_dim):
sigma_vars
[
i
]
=
np
.
quantile
(
amps_aux
,
0.5
)
sigma_vars_p
[
i
]
=
np
.
quantile
(
amps_aux
,
0.9
)
# In[344]:
sigma_vars_all
=
[
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
]
sigma_vars_all
=
np
.
stack
([
sigma_vars
,
sigma_vars_m
,
sigma_vars_p
],
axis
=
0
)
# In[345]:
key
=
[
'
max val
'
,
'
lower bound
'
,
'
higher bound
'
]
dfslist
=
[
pd
.
DataFrame
(
np
.
concatenate
(([
tshift
],
sigma_vars_all
[
i
])).
reshape
((
-
1
,
prior_dim
+
1
)),
columns
=
np
.
concatenate
(([
'
tshift
'
],
labels
)),
index
=
[
key
[
i
]])
for
i
in
range
(
3
)]
df2
=
pd
.
concat
(
dfslist
)
...
...
@@ -590,6 +943,10 @@ if not eval(overwrite):
else
:
df2
.
to_csv
(
best_data
,
index
=
True
)
# In[346]:
if
model
==
'
w-q
'
:
tau_val
=
np
.
pi
*
w
*
tau
truths
=
np
.
concatenate
((
w
,
tau_val
,
npamps
))
...
...
@@ -598,6 +955,12 @@ elif model == 'w-tau':
truths
=
np
.
concatenate
((
w
,
tau_val
,
npamps
))
elif
model
==
'
w-tau-fixed
'
:
truths
=
npamps
elif
model
==
'
w-tau-fixed-m-af
'
:
truths
=
np
.
concatenate
((
npamps
,[
mf
],[
af
]))
# In[347]:
fg
,
ax
=
dyplot
.
cornerplot
(
res
,
color
=
'
blue
'
,
show_titles
=
True
,
...
...
@@ -607,8 +970,45 @@ fg, ax = dyplot.cornerplot(res, color='blue',
truth_color
=
'
red
'
,
)
# In[364]:
afdist
=
samps_tr
[
-
1
][::
downfactor
]
mdist
=
samps_tr
[
-
2
][::
downfactor
]
w_dist
=
[
None
]
*
len
(
afdist
)
tau_dist
=
[
None
]
*
len
(
afdist
)
for
i
in
range
(
len
(
afdist
)):
w_dist
[
i
],
tau_dist
[
i
]
=
QNM_spectrum
(
mdist
[
i
],
afdist
[
i
],
2
,
2
)
for
i
in
range
(
dim
):
w_lab
[
i
]
=
wstr
+
str
(
i
)
+
'
$
'
tau_lab
[
i
]
=
taustr
+
str
(
i
)
+
'
$
'
labels
=
np
.
concatenate
((
w_lab
,
tau_lab
))
truths
=
np
.
concatenate
((
w
,
tau
))
w_tau_dist
=
np
.
column_stack
((
w_dist
,
tau_dist
))
figure
=
corner
.
corner
(
w_tau_dist
,
labels
=
labels
,
quantiles
=
[
0.05
,
0.5
,
0.95
],
show_titles
=
True
,
title_kwargs
=
{
"
fontsize
"
:
16
},
truths
=
truths
,
truth_color
=
'
r
'
)
# In[365]:
if
not
eval
(
overwrite
):
fg
.
savefig
(
corner_plot
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
)
if
model
==
'
w-tau-fixed-m-af
'
:
figure
.
savefig
(
corner_plot_extra
,
format
=
'
png
'
,
bbox_inches
=
'
tight
'
)
# In[366]:
from
dynesty
import
plotting
as
dyplot
...
...
@@ -616,9 +1016,17 @@ lnz_truth = ndim * -np.log(2 * 10.) # analytic evidence solution
fig
,
axes
=
dyplot
.
runplot
(
res
,
lnz_truth
=
lnz_truth
)
fig
.
tight_layout
()
# In[367]:
if
not
eval
(
overwrite
):
fig
.
savefig
(
diagnosis_plot
,
format
=
'
png
'
,
dpi
=
384
,
bbox_inches
=
'
tight
'
)
# In[368]:
figband
=
plt
.
figure
(
figsize
=
(
12
,
9
))
plt
.
plot
(
timesrd_final_tsh
,
gwdatanew_re_tsh
,
"
green
"
,
alpha
=
0.9
,
lw
=
3
,
label
=
r
'
$res_{240}$
'
)
plt
.
plot
(
timesrd_final_tsh
,
dict
[
model
](
vars_ml
).
real
,
'
bo
'
,
alpha
=
0.9
,
lw
=
3
,
label
=
r
'
$fit$
'
)
...
...
@@ -633,11 +1041,20 @@ plt.xlabel('t')
plt
.
ylabel
(
'
h
'
)
plt
.
show
()
# In[371]:
if
not
eval
(
overwrite
):
figband
.
savefig
(
fit_plot
)
# In[372]:
if
not
eval
(
overwrite
):
with
open
(
samples_file
,
'
w
'
)
as
file
:
writer
=
csv
.
writer
(
file
)
writer
.
writerow
(
labels
)
writer
.
writerows
(
samps
[::
downfactor
])
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment