Skip to content
Snippets Groups Projects
Commit 15725eac authored by Rutger van Haasteren's avatar Rutger van Haasteren
Browse files

Changed definition of powerlaw_flat_tail

parent 18eeaf21
No related branches found
No related tags found
No related merge requests found
...@@ -70,6 +70,7 @@ import scipy.linalg as sl ...@@ -70,6 +70,7 @@ import scipy.linalg as sl
import re import re
from enterprise.signals.parameter import function from enterprise.signals.parameter import function
import enterprise.constants as const import enterprise.constants as const
import enterprise.signals.gp_priors as gp_priors
class kumaraswamy_distribution(sstats.rv_continuous): class kumaraswamy_distribution(sstats.rv_continuous):
"""Kumaraswamy distribution like for scipy""" """Kumaraswamy distribution like for scipy"""
...@@ -211,9 +212,9 @@ def ptapar_mapping(pta): ...@@ -211,9 +212,9 @@ def ptapar_mapping(pta):
@function @function
def powerlaw_flat_tail(f, log10_A=-16, gamma=5, log10_kappa=-7, components=2): def powerlaw_flat_tail(f, log10_A=-16, gamma=5, log10_kappa=-7, components=2):
df = np.diff(np.concatenate((np.array([0]), f[::components]))) df = np.diff(np.concatenate((np.array([0]), f[::components])))
return ( pl = (10**log10_A) ** 2 / 12.0 / np.pi**2 * const.fyr ** (gamma - 3) * f ** (-gamma) * np.repeat(df, components)
(10**log10_A) ** 2 / 12.0 / np.pi**2 * const.fyr ** (gamma - 3) * f ** (-gamma) * np.repeat(df, components) + 10 ** (2*log10_kappa) flat = 10 ** (2*log10_kappa)
) return np.maximum(pl, flat)
class BoundedMvNormalPlHierarchicalPrior(object): class BoundedMvNormalPlHierarchicalPrior(object):
"""Class to represent a Bounded MvNormal hierarchical prior for Enterprise Powerlaw Signals""" """Class to represent a Bounded MvNormal hierarchical prior for Enterprise Powerlaw Signals"""
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment